The frequency domain electromagnetic method has already been widely used for tomographic imaging or electromagnetic well logging. However, different from open hole logging, the metal casing existing in production well...The frequency domain electromagnetic method has already been widely used for tomographic imaging or electromagnetic well logging. However, different from open hole logging, the metal casing existing in production well logging has a strong shielding effect on the electromagnetic waves, thus bringing some difficulties to the application of the frequency domain electromagnetic method in production well logging. According to the relation of the field source geometry to the ring around the mandrel, the general expressions of frequency domain electromagnetic responses in axially symmetrical layered conductive medium are deduced. The propagation effects caused by the low-frequency electromagnetic waves in cased hole are also analyzed. The distribution curves of eddy current density and magnetic flux density along the radial direction in the mandrel indicate that the eddy loss within the mandrel is proportional to the transmission signal frequency and the mandrel conductivity. The secondary field responses of different casing materials show that the transmission frequency has an important effect on the ability of electromagnetic waves penetrating the metal casing. The transmission frequency should be ultra-low in order to enable the electromagnetic signal to penetrate the casing easily. The numerical results of frequency responses for different casing physical parameters show that the casing thickness has a significant impact on the choice of the transmission frequency. It is also found that the effect of the casing radius on the transmission frequency can be neglected.展开更多
This paper studies the propagation effect in a closed lambda-type three-level atomic system with Doppler broadening. It is shown that, Doppler broadening due to atomic motion and propagation effect associated with dri...This paper studies the propagation effect in a closed lambda-type three-level atomic system with Doppler broadening. It is shown that, Doppler broadening due to atomic motion and propagation effect associated with driving field depletion along the active medium decreases obviously the gain and output of the lasing without inversion (LWI); the relative phase between the probe and driving fields has a remarkable modulation role to the propagation effect on LWI when Doppler broadening presents; by choosing suitable value of the relative phase, we can get the largest gain and output of LWI.展开更多
In this paper we study influences of Doppler broadening, spontaneously generated coherence, and other system parameters on propagation effect in a quasi lambda-type four-level atomic system. It is shown that when the ...In this paper we study influences of Doppler broadening, spontaneously generated coherence, and other system parameters on propagation effect in a quasi lambda-type four-level atomic system. It is shown that when the Doppler broadening is present, generally speaking, the values of gain and intensity of lasing without inversion (i.e. the probe field) in the co-propagating probe and driving fields case are much larger than those in the counter-propagating case; considerably larger gain and intensity of lasing without inversion than those without the Doppler broadening can be obtained by choosing appropriate values of the Doppler broadening width and spontaneously generated coherence strength. The gain and intensity of lasing without inversion increase with the increase of spontaneously generated coherence strength; when spontaneously generated coherence is present, much larger gain and intensity of lasing without inversion than those in the case without spontaneously generated coherence can be obtained. Choosing suitable values of the probe detuning, Rabi frequencies of the driving and pump fields at the entrance of the medium also can remarkably enhance the gain and intensity of lasing without inversion.展开更多
As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted ex...As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted extended boundary condition method,and some theoretic results are provided for improving rain measurement accuracy.Furthermore,phase information, another important characteristic quantity of microwave,is considered for tapping the potentialities of the new meteorological radar system.展开更多
A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the b...A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement.展开更多
This article utilizes the theory of mixtures to formulate a general theory of wave propagation with mass-coupling effect in fluid-saturated porous media. An attempt is made to discuss the physical interpretation and t...This article utilizes the theory of mixtures to formulate a general theory of wave propagation with mass-coupling effect in fluid-saturated porous media. An attempt is made to discuss the physical interpretation and the thermodynamic restriction of the coefficients appearing in the equations obtained, by the comparison it is shown that Biot's classical theory and the present one are essentially consistent. Also wave velocities in some special cases are calculated, from which it is concluded that mass-coupling and permeability of media greatly affect wave propagation behavior.展开更多
Based on the wave equations in cylindrically layered structures and boundary conditions, the frequency equation for axisymmetric guided waves and the expression for sound fields in a cased borehole excited by a monop...Based on the wave equations in cylindrically layered structures and boundary conditions, the frequency equation for axisymmetric guided waves and the expression for sound fields in a cased borehole excited by a monopole or multipole source have been derived. The synthetic full waveforms excited by the monopole and dipole source are simulated using a real axis integration and FFT method. According to the axisymmetric guided wave modes, the synthetic full waveforms and the effects of the interface conditions on the sound field in a cased borehole have been analyzed and studied respectively. Numerical results indicate that it may be difficult to distinguish well bonded, poorly bonded or unbonded intermediate layer between the steel pipe and formation if only using a monopole source or dipole source. To properly estimate the case boundary conditions, a combination of monopole source logging with dipole source logging is suggested.展开更多
For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading lev...For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack- tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.展开更多
A coupled-mode sound propagation model with complex effective depth is presented,in order to involve the effect of branch line integral for acoustic field in a range-dependent waveguide.The equations of motion and con...A coupled-mode sound propagation model with complex effective depth is presented,in order to involve the effect of branch line integral for acoustic field in a range-dependent waveguide.The equations of motion and continuity are used to obtain the coupled equations,which satisfy boundary conditions in the waveguide with varying topography and contain one coupling matrix.Meanwhile,the couplings between discrete and continuous spectrum are dealt with based on complex effective depth theory.Numerical simulations show that the accuracy of transmission loss is improved by the coupled mode model when eigenvalues of trapped modes are located near the branch point.The acoustic field in a non-horizontally stratified waveguide can be calculated efficiently and accurately by this model,and the energy corresponding to trapped modes,leaky modes and branch line integral can be considered adequately.展开更多
A numerical method dealing with anti-sound effect is presented to calculate nonlinear sound propagation in varying cross section area and hard-wall ducts with transonic flow and without acoustic shock waves . The effe...A numerical method dealing with anti-sound effect is presented to calculate nonlinear sound propagation in varying cross section area and hard-wall ducts with transonic flow and without acoustic shock waves . The effects of duct geometry , the flow Mach number at the throat, the sound source intensity at the inlet and the anti- sound intensity on the nonlinear sound propagation are discussed through several examples. It is also shown from the examples that there is an optimal anti-sound intensity at which a remarkable sound attenuation can be obtained at the exit.展开更多
Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation(HHG).For this purpose,the shaping of the waveform of driving pulse is an alterna...Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation(HHG).For this purpose,the shaping of the waveform of driving pulse is an alternative approach.Here,we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects,by adopting a practical way to synthesize two-color fields with fixed energy.Our results,combined with the experimental techniques,show the great potential of HHG as a tabletop light source.展开更多
In the present paper, we study the torsional wave propagation along a micro-tube with clog- ging attached to its inner surface. The clogging accumulated on the inner surface of the tube is modeled as an "elastic memb...In the present paper, we study the torsional wave propagation along a micro-tube with clog- ging attached to its inner surface. The clogging accumulated on the inner surface of the tube is modeled as an "elastic membrane" which is described by the so-called surface elasticity. A power-series solution is particularly developed for the lowest order of wave propagation. The dispersion diagram of the lowest-order wave is numerically presented with the surface (clogging) effect.展开更多
基金supported by the National Natural Science Foundation of China (No.50974103, No.61003196)the Specialized Research Plan of Shaanxi Province Education Department (No.2010JK787)
文摘The frequency domain electromagnetic method has already been widely used for tomographic imaging or electromagnetic well logging. However, different from open hole logging, the metal casing existing in production well logging has a strong shielding effect on the electromagnetic waves, thus bringing some difficulties to the application of the frequency domain electromagnetic method in production well logging. According to the relation of the field source geometry to the ring around the mandrel, the general expressions of frequency domain electromagnetic responses in axially symmetrical layered conductive medium are deduced. The propagation effects caused by the low-frequency electromagnetic waves in cased hole are also analyzed. The distribution curves of eddy current density and magnetic flux density along the radial direction in the mandrel indicate that the eddy loss within the mandrel is proportional to the transmission signal frequency and the mandrel conductivity. The secondary field responses of different casing materials show that the transmission frequency has an important effect on the ability of electromagnetic waves penetrating the metal casing. The transmission frequency should be ultra-low in order to enable the electromagnetic signal to penetrate the casing easily. The numerical results of frequency responses for different casing physical parameters show that the casing thickness has a significant impact on the choice of the transmission frequency. It is also found that the effect of the casing radius on the transmission frequency can be neglected.
基金Project supported by the National Natural Science Foundation of China (Grant No 10675076)the Natural Science Foundation of Shandong Province, China (Grant No Y2006A21)
文摘This paper studies the propagation effect in a closed lambda-type three-level atomic system with Doppler broadening. It is shown that, Doppler broadening due to atomic motion and propagation effect associated with driving field depletion along the active medium decreases obviously the gain and output of the lasing without inversion (LWI); the relative phase between the probe and driving fields has a remarkable modulation role to the propagation effect on LWI when Doppler broadening presents; by choosing suitable value of the relative phase, we can get the largest gain and output of LWI.
基金supported by the National Natural Science Foundation of China (Grant No.10875072)
文摘In this paper we study influences of Doppler broadening, spontaneously generated coherence, and other system parameters on propagation effect in a quasi lambda-type four-level atomic system. It is shown that when the Doppler broadening is present, generally speaking, the values of gain and intensity of lasing without inversion (i.e. the probe field) in the co-propagating probe and driving fields case are much larger than those in the counter-propagating case; considerably larger gain and intensity of lasing without inversion than those without the Doppler broadening can be obtained by choosing appropriate values of the Doppler broadening width and spontaneously generated coherence strength. The gain and intensity of lasing without inversion increase with the increase of spontaneously generated coherence strength; when spontaneously generated coherence is present, much larger gain and intensity of lasing without inversion than those in the case without spontaneously generated coherence can be obtained. Choosing suitable values of the probe detuning, Rabi frequencies of the driving and pump fields at the entrance of the medium also can remarkably enhance the gain and intensity of lasing without inversion.
文摘As a study on exploiting and popularizing the advanced dual-polarization weather radar technique in China,the physical mechanism for the propagation effect of the radar wave is discussed by using the widely adapted extended boundary condition method,and some theoretic results are provided for improving rain measurement accuracy.Furthermore,phase information, another important characteristic quantity of microwave,is considered for tapping the potentialities of the new meteorological radar system.
基金Supported by the National Nature Science Foundation of China under Grant Nos 11434012 and 11174312
文摘A propagation experiment was conducted in the South China Sea in 2014 with a flat bottom and seamounts respectively by using explosive sources. The effects of seamounts on sound propagation are analyzed by using the broadband signals. It is observed that the transmission loss (TL) decreases up to 7 dB for the signals in the first shadow zone due to the seamount reflection. Moreover, the TL might increase more than 30 dB in the converge zone due to the shadowing by seamounts. Abnormal TLs and pulse arrival structures at different ranges are explained by using the ray and wave theory. The experimental TLs and arrival pulses are compared with the numerical results and found to be in good agreement.
文摘This article utilizes the theory of mixtures to formulate a general theory of wave propagation with mass-coupling effect in fluid-saturated porous media. An attempt is made to discuss the physical interpretation and the thermodynamic restriction of the coefficients appearing in the equations obtained, by the comparison it is shown that Biot's classical theory and the present one are essentially consistent. Also wave velocities in some special cases are calculated, from which it is concluded that mass-coupling and permeability of media greatly affect wave propagation behavior.
基金The project is supported by the National Natural Science Foundation of China and Natural ScienceFoundation of Jiangsu Province
文摘Based on the wave equations in cylindrically layered structures and boundary conditions, the frequency equation for axisymmetric guided waves and the expression for sound fields in a cased borehole excited by a monopole or multipole source have been derived. The synthetic full waveforms excited by the monopole and dipole source are simulated using a real axis integration and FFT method. According to the axisymmetric guided wave modes, the synthetic full waveforms and the effects of the interface conditions on the sound field in a cased borehole have been analyzed and studied respectively. Numerical results indicate that it may be difficult to distinguish well bonded, poorly bonded or unbonded intermediate layer between the steel pipe and formation if only using a monopole source or dipole source. To properly estimate the case boundary conditions, a combination of monopole source logging with dipole source logging is suggested.
基金Project supported by the National Natural Science Foundation of China(No.11302054)the Fundamental Research Funds for the Central Universities(No.HEUCF130216)
文摘For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack- tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.
基金supported by the Science and Technology Foundation of State Key Laboratory,China(9140C200103120C2001)the National Nature Science Foundation of China(11234002)
文摘A coupled-mode sound propagation model with complex effective depth is presented,in order to involve the effect of branch line integral for acoustic field in a range-dependent waveguide.The equations of motion and continuity are used to obtain the coupled equations,which satisfy boundary conditions in the waveguide with varying topography and contain one coupling matrix.Meanwhile,the couplings between discrete and continuous spectrum are dealt with based on complex effective depth theory.Numerical simulations show that the accuracy of transmission loss is improved by the coupled mode model when eigenvalues of trapped modes are located near the branch point.The acoustic field in a non-horizontally stratified waveguide can be calculated efficiently and accurately by this model,and the energy corresponding to trapped modes,leaky modes and branch line integral can be considered adequately.
基金Supported by National Natural Science Foundation of ChinaNational Education Commission Foundation of China
文摘A numerical method dealing with anti-sound effect is presented to calculate nonlinear sound propagation in varying cross section area and hard-wall ducts with transonic flow and without acoustic shock waves . The effects of duct geometry , the flow Mach number at the throat, the sound source intensity at the inlet and the anti- sound intensity on the nonlinear sound propagation are discussed through several examples. It is also shown from the examples that there is an optimal anti-sound intensity at which a remarkable sound attenuation can be obtained at the exit.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11264036,11164025,11364038the Specialize Research Fund for the Doctoral Program of Higher Education of China under Grant No.20116203120001the Basic Scientific Researc Foundation for Institution of Higher Learning of Gansu Province
文摘Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation(HHG).For this purpose,the shaping of the waveform of driving pulse is an alternative approach.Here,we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects,by adopting a practical way to synthesize two-color fields with fixed energy.Our results,combined with the experimental techniques,show the great potential of HHG as a tabletop light source.
文摘In the present paper, we study the torsional wave propagation along a micro-tube with clog- ging attached to its inner surface. The clogging accumulated on the inner surface of the tube is modeled as an "elastic membrane" which is described by the so-called surface elasticity. A power-series solution is particularly developed for the lowest order of wave propagation. The dispersion diagram of the lowest-order wave is numerically presented with the surface (clogging) effect.