期刊文献+
共找到127,757篇文章
< 1 2 250 >
每页显示 20 50 100
Virtual Assembly Collision Detection Algorithm Using Backpropagation Neural Network
1
作者 Baowei Wang Wen You 《Computers, Materials & Continua》 SCIE EI 2024年第10期1085-1100,共16页
As computer graphics technology continues to advance,Collision Detection(CD)has emerged as a critical element in fields such as virtual reality,computer graphics,and interactive simulations.CD is indispensable for ens... As computer graphics technology continues to advance,Collision Detection(CD)has emerged as a critical element in fields such as virtual reality,computer graphics,and interactive simulations.CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments,particularly within complex scenarios like virtual assembly,where both high precision and real-time responsiveness are imperative.Despite ongoing developments,current CD techniques often fall short in meeting these stringent requirements,resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems.To address these limitations,this study introduces a novel algorithm that leverages the capabilities of a Backpropagation Neural Network(BPNN)to optimize the structural composition of the Hybrid Bounding Volume Tree(HBVT).Through this optimization,the research proposes a refined Hybrid Hierarchical Bounding Box(HHBB)framework,which is specifically designed to enhance the computational efficiency and precision of CD processes.The HHBB framework strategically reduces the complexity of collision detection computations,thereby enabling more rapid and accurate responses to collision events.Extensive experimental validation within virtual assembly environments reveals that the proposed algorithm markedly improves the performance of CD,particularly in handling complex models.The optimized HBVT architecture not only accelerates the speed of collision detection but also significantly diminishes error rates,presenting a robust and scalable solution for real-time applications in intricate virtual systems.These findings suggest that the proposed approach offers a substantial advancement in CD technology,with broad implications for its application in virtual reality,computer graphics,and related fields. 展开更多
关键词 Collision detection virtual assembly backpropagation neural network real-time interactivity
下载PDF
Safety Risk Assessment Analysis of Bridge Construction Using Backpropagation Neural Network
2
作者 Yue Yang 《Journal of Architectural Research and Development》 2024年第2期24-30,共7页
The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks... The evaluation of construction safety risks has become a crucial task with the increasing development of bridge construction.This paper aims to provide an overview of the application of backpropagation neural networks in assessing safety risks during bridge construction.It introduces the situation,principles,methods,and advantages,as well as the current status and future development directions of backpropagation-related research. 展开更多
关键词 Backpropagation neural network Bridge construction Safety risk assessment
下载PDF
Shallow water bathymetry based on a back propagation neural network and ensemble learning using multispectral satellite imagery
3
作者 Sensen Chu Liang Cheng +4 位作者 Jian Cheng Xuedong Zhang Jie Zhang Jiabing Chen Jinming Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期154-165,共12页
The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into... The back propagation(BP)neural network method is widely used in bathymetry based on multispectral satellite imagery.However,the classical BP neural network method faces a potential problem because it easily falls into a local minimum,leading to model training failure.This study confirmed that the local minimum problem of the BP neural network method exists in the bathymetry field and cannot be ignored.Furthermore,to solve the local minimum problem of the BP neural network method,a bathymetry method based on a BP neural network and ensemble learning(BPEL)is proposed.First,the remote sensing imagery and training sample were used as input datasets,and the BP method was used as the base learner to produce multiple water depth inversion results.Then,a new ensemble strategy,namely the minimum outlying degree method,was proposed and used to integrate the water depth inversion results.Finally,an ensemble bathymetric map was acquired.Anda Reef,northeastern Jiuzhang Atoll,and Pingtan coastal zone were selected as test cases to validate the proposed method.Compared with the BP neural network method,the root-mean-square error and the average relative error of the BPEL method can reduce by 0.65–2.84 m and 16%–46%in the three test cases at most.The results showed that the proposed BPEL method could solve the local minimum problem of the BP neural network method and obtain highly robust and accurate bathymetric maps. 展开更多
关键词 BATHYMETRY back propagation neural network ensemble learning local minimum problem multispectral satellite imagery
下载PDF
Prediction of SMILE surgical cutting formula based on back propagation neural network
4
作者 Dong-Qing Yuan Fu-Nan Tang +5 位作者 Chun-Hua Yang Hui Zhang Ying Wang Wei-Wei Zhang Liu-Wei Gu Qing-Huai Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第9期1424-1430,共7页
AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program w... AIM:To predict cutting formula of small incision lenticule extraction(SMILE)surgery and assist clinicians in identifying candidates by deep learning of back propagation(BP)neural network.METHODS:A prediction program was developed by a BP neural network.There were 13188 pieces of data selected as training validation.Another 840 eye samples from 425 patients were recruited for reverse verification of training results.Precision of prediction by BP neural network and lenticule thickness error between machine learning and the actual lenticule thickness in the patient data were measured.RESULTS:After training 2313 epochs,the predictive SMILE cutting formula BP neural network models performed best.The values of mean squared error and gradient are 0.248 and 4.23,respectively.The scatterplot with linear regression analysis showed that the regression coefficient in all samples is 0.99994.The final error accuracy of the BP neural network is-0.003791±0.4221102μm.CONCLUSION:With the help of the BP neural network,the program can calculate the lenticule thickness and residual stromal thickness of SMILE surgery accurately.Combined with corneal parameters and refraction of patients,the program can intelligently and conveniently integrate medical information to identify candidates for SMILE surgery. 展开更多
关键词 small incision lenticule extraction back propagation neural network deep learning cutting formula PREDICTION
下载PDF
Novel Contiguous Cross Propagation Neural Network Built CAD for Lung Cancer
5
作者 A.Alice Blessie P.Ramesh 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1467-1484,共18页
The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits ... The present progress of visual-based detection of the diseased area of a malady plays an essential part in the medicalfield.In that case,the image proces-sing is performed to improve the image data,wherein it inhibits unintended dis-tortion of image features or it enhances further processing in various applications andfields.This helps to show better results especially for diagnosing diseases.Of late the early prediction of cancer is necessary to prevent disease-causing pro-blems.This work is proposed to identify lung cancer using lung computed tomo-graphy(CT)scan images.It helps to identify cancer cells’affected areas.In the present work,the original input image from Lung Image Database Consortium(LIDC)typically suffers from noise problems.To overcome this,the Gaborfilter used for image processing is highly enhanced.In the next stage,the Spherical Iterative Refinement Clustering(SIRC)algorithm identifies cancer-suspected areas on the CT scan image.This approach can help radiologists and medical experts recognize cancer diseases and syndromes so that serious progress can be avoided in the early stages.These new methods help to remove unwanted por-tions of the CT image and better utilization the image.The subspace extraction of features approach is beneficial for evaluating lung cancer.This paper introduces a novel approach called Contiguous Cross Propagation Neural Network that tends to locate regions afflicted by lung cancer using CT scan pictures(CCPNN).By using the feature values from the fourth step of the procedure,the proposed CCPNN tends to categorize the lesion in the lung nodular site.The efficiency of the suggested CCPNN approach is evaluated using classification metrics such as recall(%),precision(%),F-measure(percent),and accuracy(%).Finally,the incorrect classification ratios are determined to compare the trained networks’effectiveness,through these parameters of CCPNN,it obtains the outstanding per-formance of 98.06%and it has provided the lowest false ratio of 1.8%. 展开更多
关键词 Contiguous cross propagation neural network(CCPNN) Gaborfilter
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:4
6
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
7
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 QUANTIZATION neural network hybrid asymmetric ACCURACY
下载PDF
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets 被引量:1
8
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 Artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Multi-Scale-Matching neural networks for thin plate bending problem 被引量:1
9
作者 Lei Zhang Guowei He 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期11-15,共5页
Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To r... Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To resolve this issue,multi-scale-matching neural networks are proposed to solve the singular perturbation problems.Inspired by matched asymptotic expansions,the solution is decomposed into inner solutions for small scales and outer solutions for large scales,corresponding to boundary layers and outer regions,respectively.Moreover,to conform neural networks,we introduce exponential stretched variables in the boundary layers to avoid semiinfinite region problems.Numerical results for the thin plate problem validate the proposed method. 展开更多
关键词 Singular perturbation Physics-informed neural networks Boundary layer Machine learning
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer 被引量:1
10
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:1
11
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 Physics-informed neural networks(PINNs) MULTI-SCALE Fluid dynamics Boundary layer
下载PDF
Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts 被引量:1
12
作者 Mengmeng SONG Dazhi YANG +7 位作者 Sebastian LERCH Xiang'ao XIA Gokhan Mert YAGLI Jamie M.BRIGHT Yanbo SHEN Bai LIU Xingli LIU Martin Janos MAYER 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1417-1437,共21页
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil... Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks. 展开更多
关键词 ensemble weather forecasting forecast calibration non-crossing quantile regression neural network CORP reliability diagram POST-PROCESSING
下载PDF
Backlash Nonlinear Compensation of Servo Systems Using Backpropagation Neural Networks 被引量:2
13
作者 何超 徐立新 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期300-305,共6页
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s... Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering. 展开更多
关键词 servo system backlash nonlinear characteristics limit cycle backpropagation neural networks(BPNN) compensation methods
下载PDF
Development of a convolutional neural network based geomechanical upscaling technique for heterogeneous geological reservoir 被引量:1
14
作者 Zhiwei Ma Xiaoyan Ou Bo Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2111-2125,共15页
Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and e... Geomechanical assessment using coupled reservoir-geomechanical simulation is becoming increasingly important for analyzing the potential geomechanical risks in subsurface geological developments.However,a robust and efficient geomechanical upscaling technique for heterogeneous geological reservoirs is lacking to advance the applications of three-dimensional(3D)reservoir-scale geomechanical simulation considering detailed geological heterogeneities.Here,we develop convolutional neural network(CNN)proxies that reproduce the anisotropic nonlinear geomechanical response caused by lithological heterogeneity,and compute upscaled geomechanical properties from CNN proxies.The CNN proxies are trained using a large dataset of randomly generated spatially correlated sand-shale realizations as inputs and simulation results of their macroscopic geomechanical response as outputs.The trained CNN models can provide the upscaled shear strength(R^(2)>0.949),stress-strain behavior(R^(2)>0.925),and volumetric strain changes(R^(2)>0.958)that highly agree with the numerical simulation results while saving over two orders of magnitude of computational time.This is a major advantage in computing the upscaled geomechanical properties directly from geological realizations without the need to perform local numerical simulations to obtain the geomechanical response.The proposed CNN proxybased upscaling technique has the ability to(1)bridge the gap between the fine-scale geocellular models considering geological uncertainties and computationally efficient geomechanical models used to assess the geomechanical risks of large-scale subsurface development,and(2)improve the efficiency of numerical upscaling techniques that rely on local numerical simulations,leading to significantly increased computational time for uncertainty quantification using numerous geological realizations. 展开更多
关键词 Upscaling Lithological heterogeneity Convolutional neural network(CNN) Anisotropic shear strength Nonlinear stressestrain behavior
下载PDF
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:1
15
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
Reliability analysis of slope stability by neural network,principal component analysis,and transfer learning techniques 被引量:1
16
作者 Sheng Zhang Li Ding +3 位作者 Menglong Xie Xuzhen He Rui Yang Chenxi Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4034-4045,共12页
The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-dema... The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.Conventional stochastic analysis with spatially variable slopes is time-consuming and highly computation-demanding.To assess the slope stability problems with a more desirable computational effort,many machine learning(ML)algorithms have been proposed.However,most ML-based techniques require that the training data must be in the same feature space and have the same distribution,and the model may need to be rebuilt when the spatial distribution changes.This paper presents a new ML-based algorithm,which combines the principal component analysis(PCA)-based neural network(NN)and transfer learning(TL)techniques(i.e.PCAeNNeTL)to conduct the stability analysis of slopes with different spatial distributions.The Monte Carlo coupled with finite element simulation is first conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of soils from eight slopes with the same geometry.The PCA method is incorporated into the neural network algorithm(i.e.PCA-NN)to increase the computational efficiency by reducing the input variables.It is found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given slope in terms of the computational accuracy and computational effort when compared with the other two algorithms(i.e.NN and decision trees,DT).Furthermore,the PCAeNNeTL algorithm shows great potential in assessing the stability of slope even with fewer training data. 展开更多
关键词 Slope stability analysis Monte Carlo simulation neural network(NN) Transfer learning(TL)
下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
17
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
18
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
下载PDF
A Denoiser for Correlated Noise Channel Decoding: Gated-Neural Network
19
作者 Xiao Li Ling Zhao +1 位作者 Zhen Dai Yonggang Lei 《China Communications》 SCIE CSCD 2024年第2期122-128,共7页
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to... This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN). 展开更多
关键词 belief propagation channel decoding correlated noise neural network
下载PDF
A sub-grid scale model for Burgers turbulence based on the artificial neural network method
20
作者 Xin Zhao Kaiyi Yin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期162-165,共4页
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis... The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence. 展开更多
关键词 Artificial neural network Back propagation method Burgers turbulence Large eddy simulation Sub-grid scale model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部