A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The deve...A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.展开更多
An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf...An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.展开更多
A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,esta...A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,established by the International Association of Classification Societies in 2007,were applied for ice loading calculations.An R-class propeller(a type of ice-class propeller)was utilized for subsequent investigations.The propeller modeling was simplified based on a conventional method,which expedited the model building process.The propeller performance was simulated using the computational fluid dynamics(CFD)method.The simulation results were validated by comparison with experimental data.Furthermore,the hydrodynamic pressure was transferred into a finite element analysis(FEA)module for strength assessment of ice-class propellers.According to URI3 rules,the ice loading was estimated based on different polar classes and working cases.Then,the FEA method was utilized to evaluate the propeller strength.The validation showed that the simulation results accorded with recent research results.Finally,an improved optimization method was developed to save the propeller constituent materials.The optimized propeller example had a minimum safety factor of 1.55,satisfying the safety factor requirement of≥1.5,and reduced the design volume to 88.2%of the original.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51009090)the State Key Laboratory of Ocean Engineering(Grant No.GKZD010063)
文摘A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.
基金supported by the marine research center of Amirkabir University of Technology
文摘An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.
基金The author would like to thank University of Tasmania and Newcastle University for their support。
文摘A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,established by the International Association of Classification Societies in 2007,were applied for ice loading calculations.An R-class propeller(a type of ice-class propeller)was utilized for subsequent investigations.The propeller modeling was simplified based on a conventional method,which expedited the model building process.The propeller performance was simulated using the computational fluid dynamics(CFD)method.The simulation results were validated by comparison with experimental data.Furthermore,the hydrodynamic pressure was transferred into a finite element analysis(FEA)module for strength assessment of ice-class propellers.According to URI3 rules,the ice loading was estimated based on different polar classes and working cases.Then,the FEA method was utilized to evaluate the propeller strength.The validation showed that the simulation results accorded with recent research results.Finally,an improved optimization method was developed to save the propeller constituent materials.The optimized propeller example had a minimum safety factor of 1.55,satisfying the safety factor requirement of≥1.5,and reduced the design volume to 88.2%of the original.