期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Computational and Empirical Investigation of Propeller Tip Vortex Cavitation Noise 被引量:3
1
作者 Savas SEZEN Sakir BAL 《China Ocean Engineering》 SCIE EI CSCD 2020年第2期232-244,共13页
In this study,non-cavitating and cavitating flow around the benchmark DTMB 4119 model propeller are solved using both viscous and potential based solvers.Cavitating and non-cavitating propeller radiated noises are the... In this study,non-cavitating and cavitating flow around the benchmark DTMB 4119 model propeller are solved using both viscous and potential based solvers.Cavitating and non-cavitating propeller radiated noises are then predicted by using a hybrid method in which RANS(Reynolds-averaged Navier-Stokes)and FWH(Ffowcs Williams Hawkings)equations are solved together in open water conditions.Sheet cavitation on the propeller blades is modelled by using a VOF(Volume of Fiuld)method equipped with Schnerr-Sauer cavitation model.Nevertheless,tip vortex cavitation noise is estimated by using two different semi-empirical techniques,namely Tip Vortex Index(TVI,based on potential flow theory)and Tip Vortex Contribution(TVC).As the reference distance between noise source and receiver is not defined in open water case for TVI technique,one of the outputs of this study is to propose a reference distance for TVI technique by coupling two semi-empirical techniques and ITTC distance normalization.At the defined distance,the starting point of the tip vortex cavitation is determined for different advance ratios and cavitation numbers using potential flow solver.Also,it is examined that whether the hybrid method and potential flow solver give the same noise results at the inception point of tip vortex cavitation.Results show that TVI method based on potential flow theory is reliable and can practically be used to replace the hybrid method(RANS with FWH approach)when tip vortex cavitation starts. 展开更多
关键词 FWH equation propeller noise tip vortex cavitation TVI TVC
下载PDF
Propeller cavitation viscous simulation and low-frequency noise prediction with non-uniform inflow 被引量:2
2
作者 YANG Qiongfang WANG Yongsheng ZHANG Minming 《Chinese Journal of Acoustics》 2013年第2期144-162,共19页
Aiming at predicting ship propeller's cavitation low-frequency noise spectrum, a hy- brid method combining the cavitation multi-phase flow unsteady simulation with the pulsating spherical bubble radiated noise theory... Aiming at predicting ship propeller's cavitation low-frequency noise spectrum, a hy- brid method combining the cavitation multi-phase flow unsteady simulation with the pulsating spherical bubble radiated noise theory was proposed. Then, both of the NSRDC4383 5-bladed propeller and a 7-bladed highly-skewed propeller's cavitation low-frequency noise spectrum sub- jected to the full appended SUBOFF submarine's nominal wake were investigated. The effects of thrust loading and cavity extension on the discrete line spectrum frequency and its spectrum source level were analyzed. The improved Sauer cavitation model and modified shear stress transport turbulence models were adopted to simulate the propeller sheet cavitation along with integrated verification. The cavity volume acceleration related to the characteristic length rep- resenting the unsteady sheet cavitation extension, which was more reasonable than the spherical cavity hypothesis, was used to the cavitation low-frequency noise spectrum prediction. Results show that the 7-bladed propeller truly appreciates the advantages of smaller loads, latter cav- itation inception and lower cavitating tonal noise comparing to that of the 5 blades. Under the same cavitation index based on ship speed, the interaction of wake inflow and blades will induce significantly low frequency line spectrums and strengthen their source level. Given the submarine wake, cavitation index and rotating speed condition, the thrust, torque and cavity area of blades will decrease with the decreasing load, but the fluctuated acceleration amplitude of cavity volume and the tonal noise spectrum level increases, and the discrete line spectrum components shift mainly to the even times of the BPF harmonics from the odd. If the cavita- tion extension lightens, the BPF harmonics line spectrums will be depressed, and the spectrum level at 1 kHz reduces 2.54 dB. The numerical method above constructs a numerical system to measure the cavitating hydrodynamics and noise performances of ship propellers, which can be productive for the numerical design of wake adapted low noise submarine propeller. 展开更多
关键词 BPF propeller cavitation viscous simulation and low-frequency noise prediction with non-uniform inflow line NCG
原文传递
Theoretical analysis and experimental research on non-cavitation noise modulation mechanism of underwater counter-rotation propeller 被引量:1
3
作者 ZENG Sai DU Xuanmin FAN Wei 《Chinese Journal of Acoustics》 CSCD 2018年第2期129-145,共17页
The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound... The underwater counter-rotation propeller non-cavitation noise has an obvious mod- ulation characteristic which is due to the interaction of flow and blade. A modulation mecha- nism is presented in this paper. A sound pressure spectrum model is presented to describe its non-cavitation noise with application of generalized acoustic analogy method, the modulation mechanism is expressed with the improvement of sound pressure model. The power spectrum and modulation spectrum are presented by numerical simulation. Theoretical analysis and nu- merical simulation results are verified by the cavitation tunnel experiment. The modulation model of counter-rotation propeller is beneficial to the prediction modulation characteristics and identification of underwater high-speed vehicles. 展开更多
关键词 Theoretical analysis and experimental research on non-cavitation noise modulation mechanism of underwater counter-rotation propeller
原文传递
Prediction of propeller non-cavitation noise by superimposing shifted sound signal from an isolated blade
4
作者 WEI Yingsan LIU Qiang +3 位作者 JIN Shuanbao SHEN Yang YANG Qiongfan WANG Yongsheng 《Chinese Journal of Acoustics》 CSCD 2016年第2期135-146,共12页
The time-cost of the propeller non-cavitation noise prediction can be greatly re- duced by the isolated blade method, which is validated via hybrid URANS and acoustic analogy, followed by the acoustic characteristics ... The time-cost of the propeller non-cavitation noise prediction can be greatly re- duced by the isolated blade method, which is validated via hybrid URANS and acoustic analogy, followed by the acoustic characteristics of propeller in time domain are analyzed. Firstly, we predicted the sound of the E779A propeller operating in uniform inflow and found a typical periodic characteristic of the sound pressure distribution on propeller blade as well as the sound signal of the receiver, and the result by the superimposing shifted sound signal from an isolated blade (isolated blade method) agreed well with the result by the integration on total blades, which validated the credibility of the isolated blade method in uniform inflow. Finally, we pre- dicted the sound of a propeller running in the wake of submarine by the isolated blade method, and the result also agreed well with the result by the integration on total blades, which further indicated that the isolated blade method was also applicable for the non-cavitation noise prediction of the propeller running in non-uniform inflow. The noise prediction of the counter-rotating propeller, the pump-jet can also benefit from this method. 展开更多
关键词 Prediction of propeller non-cavitation noise by superimposing shifted sound signal from an isolated blade
原文传递
Prediction of line-spectrum noise induced by high speed vehicle counter-rotation propellers in water
5
作者 ZHU Xiqing WU Wusheng(China Ship Scientific Research Center Jiangsu 214082) 《Chinese Journal of Acoustics》 1998年第1期37-48,共12页
Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interact... Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory. 展开更多
关键词 LINE Prediction of line-spectrum noise induced by high speed vehicle counter-rotation propellers in water high
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部