The proper orthogonal decomposition (POD) method for the instationary Navier-Stokes equations is considered. Several numerical approaches to evaluating the POD eigenfunctions are presented. The POD eigenfunctions are ...The proper orthogonal decomposition (POD) method for the instationary Navier-Stokes equations is considered. Several numerical approaches to evaluating the POD eigenfunctions are presented. The POD eigenfunctions are applied as a basis for a Galerkin projection of the instationary Navier-Stokes equations. And a low-dimensional ordinary differential models for fluid flows governed by the instationary Navier-Stokes equations are constructed. The numerical examples show that the method is feasible and efficient for optimal control of fluids.展开更多
Direct numerical simulation based on OpenFOAM is carried out for two-dimensional RayleighBénard( RB) convection in a square domain at high Rayleigh number of 107 and Pr = 0.71. Proper orthogonal decomposition( PO...Direct numerical simulation based on OpenFOAM is carried out for two-dimensional RayleighBénard( RB) convection in a square domain at high Rayleigh number of 107 and Pr = 0.71. Proper orthogonal decomposition( POD) is used to analyze the flow and temperature characteristics from POD energy spectrum and eigenmodes. The results show that the energy spectrum converges fast and the scale of vortex structures captured by eigenmodes becomes smaller as the eigenmode order increases. Meanwhile,a low-dimensional model( LDM) for RB convection is derived based on POD eigenmodes used as a basis of Galerkin project of Navier-Stokes-Boussinesq equations. LDM is built based on different number of eigenmodes and through the analysis of phase portraits,streamline and isothermal predicted by LDM,it is suggested that the error between LDM and DNS is still large.展开更多
针对当前油浸式电力变压器绕组瞬态温升仿真中,采用固定时间步长效率低的问题,提出一种混合变步长方法。首先,采用初始解优化算法,有效减少计算过程中方程的迭代次数;其次,结合本征正交分解算法(properorthogonal decomposition,POD),...针对当前油浸式电力变压器绕组瞬态温升仿真中,采用固定时间步长效率低的问题,提出一种混合变步长方法。首先,采用初始解优化算法,有效减少计算过程中方程的迭代次数;其次,结合本征正交分解算法(properorthogonal decomposition,POD),改善大规模有限元方程组存在的阶数过高、条件数过大的问题,提高了方程的求解效率和数值稳定性;第三,提出自适应(adaptivetimestepping,ATS)-启发式(heuristic time stepping,HTS)混合变步长算法,通过对时间步长的自适应与启发式调整,有效解决瞬态计算中计算效率与计算精度的对立问题;最后,建立油浸式电力变压器绕组二维单分区分匝的流热耦合仿真模型,以验证所提算法的正确性与高效性。数值计算结果表明:在流场中,与固定步长的计算结果相比,混合变步长算法的误差小于0.46%,计算效率提升了18.45倍;在温度场中,与固定步长的计算结果相比,所提算法的误差小于0.04%,计算效率提升了6倍。同时,通过与传统变步长算法的计算结果对比,说明所提混合变步长算法在计算精度、计算效率及变步长效果方面均具有一定优势。此外,还探讨混合变步长计算中,不同的参数设置对瞬态计算结果及状态变化过程的影响,为其工程应用奠定了一定基础。展开更多
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number...In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method.展开更多
A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical tra...A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolu- tion of the surface CO2 fluxes and help avoid the "signal-to-noise" problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the perform- ance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation net- work in different CO2 flux situations. The results indicate that more observation sites would be useful to systematic- ally improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.展开更多
基金National Natural Science Foundation of China (No.10671153)
文摘The proper orthogonal decomposition (POD) method for the instationary Navier-Stokes equations is considered. Several numerical approaches to evaluating the POD eigenfunctions are presented. The POD eigenfunctions are applied as a basis for a Galerkin projection of the instationary Navier-Stokes equations. And a low-dimensional ordinary differential models for fluid flows governed by the instationary Navier-Stokes equations are constructed. The numerical examples show that the method is feasible and efficient for optimal control of fluids.
基金Sponsored by the National Natural Science Foundation of China(Grant o.51576051)
文摘Direct numerical simulation based on OpenFOAM is carried out for two-dimensional RayleighBénard( RB) convection in a square domain at high Rayleigh number of 107 and Pr = 0.71. Proper orthogonal decomposition( POD) is used to analyze the flow and temperature characteristics from POD energy spectrum and eigenmodes. The results show that the energy spectrum converges fast and the scale of vortex structures captured by eigenmodes becomes smaller as the eigenmode order increases. Meanwhile,a low-dimensional model( LDM) for RB convection is derived based on POD eigenmodes used as a basis of Galerkin project of Navier-Stokes-Boussinesq equations. LDM is built based on different number of eigenmodes and through the analysis of phase portraits,streamline and isothermal predicted by LDM,it is suggested that the error between LDM and DNS is still large.
文摘针对当前油浸式电力变压器绕组瞬态温升仿真中,采用固定时间步长效率低的问题,提出一种混合变步长方法。首先,采用初始解优化算法,有效减少计算过程中方程的迭代次数;其次,结合本征正交分解算法(properorthogonal decomposition,POD),改善大规模有限元方程组存在的阶数过高、条件数过大的问题,提高了方程的求解效率和数值稳定性;第三,提出自适应(adaptivetimestepping,ATS)-启发式(heuristic time stepping,HTS)混合变步长算法,通过对时间步长的自适应与启发式调整,有效解决瞬态计算中计算效率与计算精度的对立问题;最后,建立油浸式电力变压器绕组二维单分区分匝的流热耦合仿真模型,以验证所提算法的正确性与高效性。数值计算结果表明:在流场中,与固定步长的计算结果相比,混合变步长算法的误差小于0.46%,计算效率提升了18.45倍;在温度场中,与固定步长的计算结果相比,所提算法的误差小于0.04%,计算效率提升了6倍。同时,通过与传统变步长算法的计算结果对比,说明所提混合变步长算法在计算精度、计算效率及变步长效果方面均具有一定优势。此外,还探讨混合变步长计算中,不同的参数设置对瞬态计算结果及状态变化过程的影响,为其工程应用奠定了一定基础。
基金supported by the National Natural Science Foundation of China (No. 11502211)
文摘In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method.
基金Supported by the National Natural Science Foundation of China(41130528)National High Technology Research and Development Program of China(2013AA122002)+1 种基金Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues(XDA05040404)National Key Technology Research and Development Program of China(2016YFC0202103)
文摘A regional surface carbon dioxide (C02) flux inversion system, the Tan-Tracker-Region, was developed by incor- porating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolu- tion of the surface CO2 fluxes and help avoid the "signal-to-noise" problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the perform- ance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation net- work in different CO2 flux situations. The results indicate that more observation sites would be useful to systematic- ally improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a thorough estimation of CO2 flux variability over East Asia could be performed with the regional inversion system.