Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) ...Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn.展开更多
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each e...A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let X(G ) denote the smallest value k in such a ' G coloring of G. This parameter makes sense for graphs containing no isolated edges (we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 〈 5 then x'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.展开更多
A proper <em>k</em>-edge coloring of a graph <em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>)) is an assignment <em>c</em>...A proper <em>k</em>-edge coloring of a graph <em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>)) is an assignment <em>c</em>: <em>E</em>(<em>G</em>) → {1, 2, …, <em>k</em>} such that no two adjacent edges receive the same color. A neighbor sum distinguishing <em>k</em>-edge coloring of <em>G</em> is a proper <em>k</em>-edge coloring of <em>G</em> such that <img src="Edit_28f0a24c-7d3f-4bdc-b58c-46dfa2add4b4.bmp" alt="" /> for each edge <em>uv</em> ∈ <em>E</em>(<em>G</em>). The neighbor sum distinguishing index of a graph <em>G</em> is the least integer <em>k</em> such that <em>G </em>has such a coloring, denoted by <em>χ’</em><sub>Σ</sub>(<em>G</em>). Let <img src="Edit_7525056f-b99d-4e38-b940-618d16c061e2.bmp" alt="" /> be the maximum average degree of <em>G</em>. In this paper, we prove <em>χ</em>’<sub>Σ</sub>(<em>G</em>) ≤ max{9, Δ(<em>G</em>) +1} for any normal graph <em>G</em> with <img src="Edit_e28e38d5-9b6d-46da-bfce-2aae47cc36f3.bmp" alt="" />. Our approach is based on the discharging method and Combinatorial Nullstellensatz.展开更多
Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for ...Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.展开更多
A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex.Let f(v)denote the sum of colors of the edge...A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex.Let f(v)denote the sum of colors of the edges incident to v.A k-neighbor sum distinguishing edge coloring of G is a proper k-edge coloring of G such that for each edge uv∈E(G),f(u)≠f(v).Byχ’_∑(G),we denote the smallest value k in such a coloring of G.Let mad(G)denote the maximum average degree of a graph G.In this paper,we prove that every normal graph with mad(G)<10/3 andΔ(G)≥8 admits a(Δ(G)+2)-neighbor sum distinguishing edge coloring.Our approach is based on the Combinatorial Nullstellensatz and discharging method.展开更多
基金Supported by NNSF of China(61163037,61163054,61363060)
文摘Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn.
基金Supported by National Natural Science Foundation of China(Grant Nos.11371355,11471193,11271006,11631014)the Foundation for Distinguished Young Scholars of Shandong Province(Grant No.JQ201501)the Fundamental Research Funds of Shandong University and Independent Innovation Foundation of Shandong University(Grant No.IFYT14012)
文摘A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let X(G ) denote the smallest value k in such a ' G coloring of G. This parameter makes sense for graphs containing no isolated edges (we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 〈 5 then x'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.
文摘A proper <em>k</em>-edge coloring of a graph <em>G</em> = (<em>V</em>(<em>G</em>), <em>E</em>(<em>G</em>)) is an assignment <em>c</em>: <em>E</em>(<em>G</em>) → {1, 2, …, <em>k</em>} such that no two adjacent edges receive the same color. A neighbor sum distinguishing <em>k</em>-edge coloring of <em>G</em> is a proper <em>k</em>-edge coloring of <em>G</em> such that <img src="Edit_28f0a24c-7d3f-4bdc-b58c-46dfa2add4b4.bmp" alt="" /> for each edge <em>uv</em> ∈ <em>E</em>(<em>G</em>). The neighbor sum distinguishing index of a graph <em>G</em> is the least integer <em>k</em> such that <em>G </em>has such a coloring, denoted by <em>χ’</em><sub>Σ</sub>(<em>G</em>). Let <img src="Edit_7525056f-b99d-4e38-b940-618d16c061e2.bmp" alt="" /> be the maximum average degree of <em>G</em>. In this paper, we prove <em>χ</em>’<sub>Σ</sub>(<em>G</em>) ≤ max{9, Δ(<em>G</em>) +1} for any normal graph <em>G</em> with <img src="Edit_e28e38d5-9b6d-46da-bfce-2aae47cc36f3.bmp" alt="" />. Our approach is based on the discharging method and Combinatorial Nullstellensatz.
基金Supported by the National Natural Science Foundation of China(11471193,11631014)the Foundation for Distinguished Young Scholars of Shandong Province(JQ201501)+1 种基金the Fundamental Research Funds of Shandong UniversityIndependent Innovation Foundation of Shandong University(IFYT14012)
文摘Let Ф : E(G)→ {1, 2,…, k}be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if ∑eЭu Ф(e)≠∑eЭu Ф(e) for each edge uv∈E(G).The smallest value k for which G has such a coloring is denoted by χ'Σ(G) which makes sense for graphs containing no isolated edge(we call such graphs normal). It was conjectured by Flandrin et al. that χ'Σ(G) ≤△(G) + 2 for all normal graphs,except for C5. Let mad(G) = max{(2|E(H)|)/(|V(H)|)|HЭG}be the maximum average degree of G. In this paper,we prove that if G is a normal graph with△(G)≥5 and mad(G) 〈 3-2/(△(G)), then χ'Σ(G)≤△(G) + 1. This improves the previous results and the bound △(G) + 1 is sharp.
基金Supported by the Natural Science Foundation of Shandong Provence(Grant Nos.ZR2018BA010,ZR2016AM01)the National Natural Science Foundation of China(Grant No.11571258)。
文摘A proper k-edge coloring of a graph G is an assignment of one of k colors to each edge of G such that there are no two edges with the same color incident to a common vertex.Let f(v)denote the sum of colors of the edges incident to v.A k-neighbor sum distinguishing edge coloring of G is a proper k-edge coloring of G such that for each edge uv∈E(G),f(u)≠f(v).Byχ’_∑(G),we denote the smallest value k in such a coloring of G.Let mad(G)denote the maximum average degree of a graph G.In this paper,we prove that every normal graph with mad(G)<10/3 andΔ(G)≥8 admits a(Δ(G)+2)-neighbor sum distinguishing edge coloring.Our approach is based on the Combinatorial Nullstellensatz and discharging method.