期刊文献+
共找到10,656篇文章
< 1 2 250 >
每页显示 20 50 100
Hydration Behavior and Cementitious Properties of Calcium Carbonate-aluminate Minerals Composite
1
作者 王冲 周帅 +2 位作者 ZOU Luyao LIU Jiawen ZHENG Yalin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期126-133,共8页
The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementi... The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementitious material. The composite system of calcium carbonate and aluminate minerals is studied by measuring the component of hydration products, the hydration heat, setting time and compressive strength.The results prove that the composite system has certain cementitious properties and is feasible to prepare new low-carbon cement. 展开更多
关键词 LIMESTONE hydrated calcium carboaluminate cementitious properties mechanical properties
下载PDF
Structure,electronic,and nonlinear optical properties of superalkaline M_(3)O(M=Li,Na)doped cyclo[18]carbon
2
作者 刘晓东 卢其亮 罗其全 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期311-317,共7页
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef... Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm. 展开更多
关键词 superalkaline doped carbon structure and electronic properties nonlinear optical properties density functional theory(DFT)
下载PDF
The Influence of Rice Husk Ash on Mechanical Properties of the Mortar and Concrete: A Critical Review
3
作者 Md Jahangir Alam Mithun Biswas +2 位作者 Mohammad Biplab Mia Shahin Alam Md Mosabber Hossain 《Open Journal of Civil Engineering》 2024年第1期65-81,共17页
Increasing the population and infrastructure in both emerging and developed countries requires a considerable amount of cement, which significantly affects the environment. The primary materials of concrete (‘cement... Increasing the population and infrastructure in both emerging and developed countries requires a considerable amount of cement, which significantly affects the environment. The primary materials of concrete (‘cement’) production emit a large quantity of CO<sub>2</sub> into the environment. Also, the cost of conventional building materials like cement gives motivation to find geopolymer waste materials for concrete. To reduce harmful effects on the environment and cost of traditional concrete substance, alternative waste materials like rice husk ash (RHA), ground granulated blast-furnace (GGBS), fly ash (FA), and metakaolin (MK) can be used due to their pozzolanic behavior. RHA waste material with a high silica concentration obtained from burning rice husks can possibly be used as a supplementary cementitious material (SCM) in the manufacturing of concrete, and its strong pozzolanic properties can contribute to the strength and impermeability of concrete. This review paper highlights a summary of the positive effect of using RHA as a partial substitute for cement in building construction, as well as its optimal inclusion of enhanced mechanical properties like compressive strength, flexural strength, and split tensile strength of mortar and concrete. 展开更多
关键词 CEMENT Rice Husk Ash RHA properties Mechanical properties Carbon Di-oxide Emission and Greenhouse Gas
下载PDF
Effects of site preparation methods on soil physical properties and outplanting success of coniferous seedlings in boreal forests
4
作者 Aleksey S.Ilintsev Elena N.Nakvasina Alexander P.Bogdanov 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期70-80,共11页
This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites ... This study assessed the effect of patch scarification and mounding on the physical properties of the root layer and the success of tree planting in various types of forests.This study was conducted on 12 forest sites in taiga forests of the European part of Russia.A total of 54 plots were set up to assess seedling survival;root collar diameter,height,and heigh increment were measured for 240 seedlings to assess growth.In the rooting layer,240 soil samples were taken to determine physical properties.The study showed that soil treatment methods had no effect on bulk density and total porosity in Cladina sites.However,reduced soil moisture was noted,particularly in mounds,resulting in increased aeration.In Myrtillus sites,there were increased bulk density,reduced soil moisture,and total porosity in the mounds.Mounding treatment in Polytrichum sites resulted in reduced soil moisture and increased aeration porosity.In the Myrtillus and Polytrichum sites,patch scarification had no effects on physical properties.In Polytrichum sites,survival rates,heights,and heigh increments of bareroot Norway spruce seedlings in mounds were higher than in patches;however,the same did not apply to diameter.In Cladina and Myrtillus sites,there was no difference in growth for bareroot and containerised seedlings with different soil treatments.Growing conditions and soil types should be considered when applying different soil treatment methods to ensure high survival rates and successful seedling growth. 展开更多
关键词 Boreal forests Mechanical site preparation Patch scarification MOUNDING Soil properties Containerised seedlings Bareroot seedlings
下载PDF
Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Containedβ-solidifiedγ-TiAl Alloy
5
作者 王秀琦 GUO Ruiqi +5 位作者 刘国怀 LI Tianrui YANG Yuxuan CHEN Yang XIN Meiling WANG Zhaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期738-746,共9页
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac... The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation. 展开更多
关键词 TiAl alloy phase transformation heat treatment BORIDE microstructure mechanical properties
下载PDF
Recent research in mechanical properties of geopolymer-based ultrahigh-performance concrete:A review
6
作者 G.Murali 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期67-88,共22页
Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC... Due to the growing need for sustainable and ultra-high-strength construction materials,scientists have created an innovative ultra-high-performance concrete called Geopolymer based ultra-highperformance concrete(GUHPC).Besides,in the last few decades,there have been a lot of explosions and ballistic attacks around the world,which have killed many civilians and fighters in border areas.In this context,this article reviews the fresh state and mechanical properties of GUHPC.Firstly,the ingredients of GUHPC and fresh properties such as setting time and flowability are briefly covered.Secondly,the review of compressive strength,flexure strength,tensile strength and modulus of elasticity of fibrous GUHPC.Thirdly,the blast and projectile impact resistance performance was reviewed.Finally,the microstructural characteristics were reviewed using the scanning electron microscope and X-ray Powder Diffraction.The review outcome reveals that the mechanical properties were increased when 30%silica fume was added to a higher dose of steel fibre to improve the microstructure of GUHPC.It is hypothesized that the brittleness of GUHPC was mitigated by adding 1.5%steel fibre reinforcement,which played a role in the decrease of contact explosion cratering and spalling.Removing the need for cement in GUHPC was a key factor in the review,indicating a promising potential for lowering carbon emissions.However,GUHPC research is still in its early stages,so more study is required before its full potential can be utilized. 展开更多
关键词 Mechanical properties BLAST Projectile impact FIBRE GEOPOLYMER Silica fume Alkaline activators
下载PDF
Investigation of Microstructure, Microhardness and Thermal Properties of Ag-In Intermetallic Alloys Prepared by Vacuum Arc Meltings
7
作者 ÇELİK Erçevik ATA ESENER Pınar +1 位作者 ÖZTÜRK Esra AKSÖZ Sezen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期182-187,共6页
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com... Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2). 展开更多
关键词 thermal properties microstructure characterization MICROHARDNESS ALLOYS material characterization
下载PDF
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
8
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance
9
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
10
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties MICROSTRUCTURE
下载PDF
Effect of neutral polymeric bonding agent on tensile mechanical properties and damage evolution of NEPE propellant
11
作者 M.Wubuliaisan Yanqing Wu +3 位作者 Xiao Hou Kun Yang Hongzheng Duan Xinmei Yin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期357-367,共11页
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne... Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder. 展开更多
关键词 Solid propellant Bonding agent Mechanical properties Damage evolution Cohesive-zone model Interface debonding
下载PDF
Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na_(2)O–V_(2)O_(5)–Nb_(2)O_(5)–P_(2)O_(5) glass
12
作者 Sara Marijan Luka Pavic 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期186-196,共11页
Solid-state impedance spectroscopy(SS-IS)was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary m... Solid-state impedance spectroscopy(SS-IS)was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary mixed glass former(MGF)system 35Na_(2)O–10V_(2)O_(5)–(55-x)P_(2)O_(5)–xNb_(2)O_(5)(x=0–40,mol%).The dielectric parameters,including the dielectric strength and dielectric loss,are determined from the frequency and temperature-dependent complex permittivity data,revealing a significant dependence on the Nb2O5 content.The transition from a predominantly phosphate glass network(x<10,region I)to a mixed niobate–phosphate glass net-work(10≤x≤20,region II)leads to an increase in the dielectric parameters,which correlates with the observed trend in the direct-cur-rent(DC)conductivity.In the predominantly niobate network(x≥25,region III),the highly polarizable nature of Nb5+ions leads to a fur-ther increase in the dielectric permittivity and dielectric strength.This is particularly evident in Nb-40 glass-ceramic,which contains Na_(13)Nb_(35)O_(94) crystalline phase with a tungsten bronze structure and exhibits the highest dielectric permittivity of 61.81 and the lowest loss factor of 0.032 at 303 K and 10 kHz.The relaxation studies,analyzed through modulus formalism and complex impedance data,show that DC conductivity and relaxation processes are governed by the same mechanism,attributed to ionic conductivity.In contrast to glasses with a single peak in frequency dependence of imaginary part of electrical modulus,M″(ω),Nb-40 glass-ceramic exhibits two distinct contributions with similar relaxation times.The high-frequency peak indicates bulk ionic conductivity,while the additional low-fre-quency peak is associated with the grain boundary effect,confirmed by the electrical equivalent circuit(EEC)modelling.The scaling characteristics of permittivity and conductivity spectra,along with the electrical modulus,validate time-temperature superposition and demonstrate a strong correlation with composition and modification of the glass structure upon Nb_(2)O_(5) incorporation. 展开更多
关键词 phosphate glasses GLASS-CERAMICS impedance spectroscopy dielectric properties relaxation processes permittivity scaling conductivity scaling modulus formalism
下载PDF
Peat properties of a tropical forest reserve adjacent to a fire-break canal
13
作者 Dayang Nur Sakinah Musa Mohd Zahirasri Mohd Tohir +3 位作者 Xinyan Huang Luqman Chuah Abdullah Mohamad Syazaruddin Md Said Muhammad Firdaus Sulaiman 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期155-167,共13页
Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit gr... Tropical peat comprises decomposed dead plant material and acts like a sponge to absorb water,making it fully saturated.However,drought periods dry it readily and increases its vulnerability to fire.Peat fires emit greenhouse gases and particles contributing to haze,and prevention by constructing fire-break canals to reduce fire spread into forest reserves is crucial.This paper aims to determine peat physical and chemical properties near a fire-break canal at different fire frequency areas.Peat sampling was conducted at two forest reserves in Malaysia which represent low fire frequency and high fire frequency areas.The results show that peat properties were not affected by the construction of a fire-break canal,however lignin and cellulose content increased significantly from the distance of the canal in both areas.The study concluded that fire frequency did not significantly influence peat properties except for porosity.The higher fibre content in the high frequency area did not influence moisture content nor the ability to regain moisture.Thus,fire frequency might contribute differently to changes in physical and chemical properties,hence management efforts to construct fire-break canals and restoration efforts should protect peatlands from further degradation.These findings will benefit future management and planning for forest reserves. 展开更多
关键词 Peat fire Peat properties Fire-break canals Forest reserves
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys
14
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
Microstructural characterization and mechanical properties of(TiC+TiB)/TA15 composites prepared by an in-situ synthesis method
15
作者 Zhi-yong Zhang Jiao-jiao Cheng +3 位作者 Jia-qi Xie Shi-bing Liu Kun Shi Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第2期168-174,共7页
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based... Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃. 展开更多
关键词 titanium matrix composites microstucture MICROHARDNESS tensile properties in-situ synthesis
下载PDF
Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
16
作者 范凤国 段林彤 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期589-595,共7页
The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biom... The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices.This article presents the elucidation of the properties of nanoparticle films.Here,a flexible film is fabricated based on polyethylene terephthalate(PET)and magnetic iron oxide at the nanoscale using layer-by-layer technology.The 2D thin flexible film material can be bent at different angles from 0°to 360°.With an increase in elastic deformation angles,the magnetocaloric effect of the film gradually increases in the alternating magnetic field.The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy.The magnetocaloric effect and magnetic induction effect are controlled by deformation,providing a new idea for the application of elastic films.It combines the flexibility of the nanoparticle PET substrate and,in the future,it may be used for skin adhesion for administration and magnetic stimulation control. 展开更多
关键词 nanoparticle film deformation magnetic properties flexible substrates
下载PDF
Effect of In doping on the evolution of microstructure,magnetic properties and corrosion resistance of NdFeB magnets
17
作者 李豫豪 范晓东 +8 位作者 贾智 范璐 丁广飞 刘新才 郭帅 郑波 曹帅 陈仁杰 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期623-629,共7页
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga... The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets. 展开更多
关键词 In-doping NdFeB magnets magnetic properties corrosion resistance
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications
18
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
19
作者 Ning Wang Kai Ma +3 位作者 Qiu-da Li Yu-dong Yuan Yan-chun Zhao Li Feng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期147-158,共12页
AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentat... AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively. 展开更多
关键词 high-entropy alloys MICROSTRUCTURE mechanical properties wear resistance strengthening mechanisms
下载PDF
Temperature dependence of mechanical properties and damage evolution of hot dry rocks under rapid cooling
20
作者 Longjun Dong Yihan Zhang +2 位作者 Lichang Wang Lu Wang Shen Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期645-660,共16页
Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoust... Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties. 展开更多
关键词 Hot dry rock Acoustic emission Mechanical properties High temperature DAMAGE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部