期刊文献+
共找到3,163篇文章
< 1 2 159 >
每页显示 20 50 100
Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr-modified A356 aluminum casting alloy 被引量:10
1
作者 孙少纯 袁博 刘满平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1884-1890,共7页
The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands inc... The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data. 展开更多
关键词 A356 aluminum alloy sand casting cooling condition strontium modification MICROSTRUCTURE mechanical properties
下载PDF
Physical and Mechanical Properties of Coral Sand in the Nansha Islands 被引量:16
2
作者 于红兵 孙宗勋 唐诚 《Marine Science Bulletin》 CAS 2006年第2期31-39,共9页
Coral sand is a unique material developed in the tropical ocean environment, which is mainly composed of coral and other marine organism debris, with the CaCO3 content up to 96 %. It has special physical and mechanica... Coral sand is a unique material developed in the tropical ocean environment, which is mainly composed of coral and other marine organism debris, with the CaCO3 content up to 96 %. It has special physical and mechanical properties due to its composition, structure and sedimentary environment. In this contribution, we discuss its specific gravity, porosity ratio compressibility, crushing, shearing and intensity for coral sand samples from the Nansha islands based on laboratory mechanical tests. Our results show distinct high porosity ratio, high friction angle and low intensity as compared with the quartz sand. We believe that grain crushing is the main factor that influences the deformation and strength of coral sand. Comprehensive study on the physical and mechanical properties of coral sands is significant in providing reliable scientific parameters to construction on coral islet, and thus avoids accidents in construction. 展开更多
关键词 Nansha Islands coral sand physical and mechanical properties
下载PDF
Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand 被引量:22
3
作者 王乾坤 LI Peng +2 位作者 田亚坡 CHEN Wei SU Chunyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期996-1001,共6页
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a... The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm. 展开更多
关键词 coral reef sand concrete mechanical properties microstructure interfacial transition zone
下载PDF
Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills 被引量:5
4
作者 JIANG Fei-fei ZHOU Hui +2 位作者 SHENG Jia KOU Yong-yuan LI Xiang-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2999-3012,共14页
Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(C... Cemented backfill used in deep mines would inevitably be exposed to the ambient temperature of 20−60℃in the next few decades.In this paper,two types of cemented gravel sand backfills,cemented rod-mill sand backfill(CRB)and cemented gobi sand backfill(CGB),were prepared and cured at various temperatures(20,40,60℃)and ages(3,7,28 d),and the effects of temperature and age on the physico-mechanical properties of CRB and CGB were investigated based on laboratory tests.Results show that:1)the effects of temperature and age on the physico-mechanical properties of backfills mainly depend on the amount of hydration products and the refinement of cementation structures.The temperature has a more significant effect on thermal expansibility and ultrasonic performance at early ages.2)The facilitating effect of temperature and age on the compressive strength of CGB is higher than that on CRB.With the increase of temperature,the compressive failure modes changed from X-conjugate shear failure to tensile failure,and the integrity of specimens was significantly improved.3)Similarly,the shear performance of CGB is generally better than that of CRB.The temperature has a weaker effect on shear strength than age,but the shear deformation and shear plane morphology are closely related to temperature. 展开更多
关键词 cemented backfill gravel sand TEMPERATURE physico-mechanical properties deformation characteristics
下载PDF
Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method 被引量:2
5
作者 Hong-xiang Li Xin-yu Nie +4 位作者 Zan-bing He Kang-ning Zhao Qiang Du Ji-shan Zhang Lin-zhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1412-1423,共12页
Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temper... Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment. 展开更多
关键词 INTERFACIAL microstructure INTERFACIAL BONDING mechanism mechanical properties INSERT molding method coherent boundaries Ti/Al JOINTS
下载PDF
Formation and ecological response of sand patches in the protection system of Shapotou section of the Baotou-Lanzhou railway,China
6
作者 DUN Yaoquan QU Jianjun +4 位作者 KANG Wenyan LI Minlan LIU Bin WANG Tao SHAO Mei 《Journal of Arid Land》 SCIE CSCD 2024年第2期298-313,共16页
The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses ... The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway. 展开更多
关键词 railway protection system sand patch MORPHOLOGY vegetation characteristic soil property
下载PDF
Elimination of cracks in stainless steel casings via 3D printed sand molds with an internal topology structure
7
作者 Jun-hang Xu Bao-zhi Li +6 位作者 Zhao-wei Song Yun-bao Gao Jing-ming Li Yu Wang Qiu-lin Wen Heng Cao Zeng-rui Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第4期319-326,共8页
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects... The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs. 展开更多
关键词 gas turbine casing crack defects 3D printed sand mold topological structure high-temperature concession
下载PDF
Effect of Lightweight Aggregates Incorporation on the Mechanical Properties and Shrinkage Compensation of a Cement-Ground Granulated Blast Furnace Slag-Phosphogypsum Ternary System
8
作者 Yu Wang Mengyang Ma +2 位作者 Yong Long Qingxiang Zhao Zhifei Cheng 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1773-1784,共12页
Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this ... Shrinkage-induced cracking is a common issue in concrete structures,where the formation of cracks not only affects the aesthetic appearance of concrete but also potentially reduces its durability and strength.In this study,the effect of ceramsite sand addition on the properties of a ternary system of cement-ground granulated blast furnace slag(GGBFS)-phosphogypsum(PG)is investigated.In particular,the fluidity,rheology,hydration heat,compressive strength,autogenous shrinkage,and drying shrinkage of the considered mortar specimens are analyzed.The results indicate that an increase in PG content leads to a decrease in fluidity,higher viscosity,lower exothermic peak,and lower compressive strength.However,the shrinkage of the mortar specimens is effectively compensated.The incorporation of internal curing water from ceramsite sand improves fluidity,decreases both yield stress and viscosity,enhances the degree of hydration,and induces mortar expansion.However,the inferior mechanical properties of the ceramsite sand generally produce a decrease in the compressive strength. 展开更多
关键词 PHOSPHOGYPSUM ceramsite sand internal curing mechanical property SHRINKAGE
下载PDF
Single-factor analysis and interaction terms on the mechanical and microscopic properties of cemented aeolian sand backfill 被引量:2
9
作者 Shushuai Wang Renshu Yang +2 位作者 Yongliang Li Bin Xu Bin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1584-1595,共12页
The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cement... The use of aeolian sand(AS)as an aggregate to prepare coal mine cemented filling materials can resolve the problems of gangue shortage and excessive AS deposits.Owing to the lack of research on the mechanism of cemented AS backfill(CASB),the response surface method(RSM)was adopted in this study to analyze the influence of ordinary Portland cement(PO)content(x_(1)),fly ash(FA)-AS(FA-AS)ratio(x_(2)),and concentration(x_(3))on the mechanical and microscopic properties of the CASB.The hydration characteristics and internal pore structure of the backfill were assessed through thermogravimetric/derivative thermogravimetric analysis,mercury intrusion porosimetry,and scanning electron microscopy.The RSM results show that the influence of each factor and interaction term on the response values is extremely significant(except x_(1)x_(3),which had no obvious effect on the 28 d strength).The uniaxial compressive strength(UCS)increased with the PO content,FA-AS ratio,and concentration.The interaction effects of x_(1)x_(2),x_(1)x_(3),and x_(2)x_(3) on the UCS at 3,7,and 28 d were analyzed.In terms of the influence of interaction items,an improvement in one factor promoted the strengthening effect of another factor.The enhancement mechanism of the curing time,PO content,and FA-AS ratio on the backfill was reflected in the increase in hydration products and pore structure optimization.By contrast,the enhancement mechanism of the concentration was mainly the pore structure optimization.The UCS was positively correlated with weight loss and micropore content but negatively correlated with the total porosity.The R^(2) value of the fitting function of the strength and weight loss,micropore content,and total porosity exceeded 0.9,which improved the characterization of the enhancement mechanism of the UCS based on the thermogravimetric analysis and pore structure.This work obtained that the influence rules and mechanisms of the PO,FA-AS,concentration,and interaction terms on the mechanical properties of the CASB provided a certain theoretical and engineering guidance for CASB filling. 展开更多
关键词 cemented aeolian sand backfill response surface method mechanical properties microscopic properties influence mechanism
下载PDF
Rheological properties of feedstocks for powder extrusion molding 被引量:1
10
作者 周继承 黄伯云 吴恩熙 《中国有色金属学会会刊:英文版》 CSCD 2000年第5期639-641,共3页
The rheological behaviors of feedstocks for powder extrusion molding, in the temperature range of 40~80 ℃ and the Newton shear rate of 3~800 s -1 , were studied. The effects of feedstock constitution, shear rate an... The rheological behaviors of feedstocks for powder extrusion molding, in the temperature range of 40~80 ℃ and the Newton shear rate of 3~800 s -1 , were studied. The effects of feedstock constitution, shear rate and temperature on apparent viscosity, shear stress and active energy were investigated. The viscose flow active energy of PEM feedstocks is 15.89~90.77 kJ/mol. Based on this research, the PEM technical parameters have optimized. [ 展开更多
关键词 POWDER EXTRUSION molding FEEDSTOCK RHEOLOGICAL property apparent viscosity
下载PDF
Mechanical Properties of Sea Water Sea Sand Coral Concrete Modified with Different Cement and Fiber Types 被引量:4
11
作者 Xibo Qi Yijie Huang +3 位作者 Xiaowei Li Zhenhua Hu Jingwei Ying Dayong Li 《Journal of Renewable Materials》 SCIE EI 2020年第8期915-937,共23页
The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An exp... The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation(DIC)method to analyze the strain distribution and crack propagation of specimen.Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers(SSF),while polypropylene fibers(PF)enhanced the SWSSCC peak deformation.It was found that the elastic modulus and strength of SWSSCC using ordinary Portland cement(OPC)were higher compared to specimen with low alkalinity sulphoaluminate cement(LAS).Typical strain distribution changed with the variation of fiber types.The propagation and characteristics of cracks in SWSSCC containing PF were similar to those of cracks in SWSSCC.However,the propagation of cracks and the development of plastic deformation in SWSSCC were effectively hindered by adopting SSF.Finally,an analytical stress-strain expression of specimen considering the influences of fibers was established.The obtained results would provide a basis for the application of SWSSCC. 展开更多
关键词 Sea water sea sand coral concrete modified concrete mechanical properties stress-strain curve crack propagation strain distribution
下载PDF
Influence of wind-blown sand content on the mechanical quality state of ballast bed in sandy railways
12
作者 Yihao Chi Hong Xiao +3 位作者 Zhihai Zhang Yang Wang Zhongxia Qian Weize Zhao 《Railway Engineering Science》 EI 2024年第4期533-550,共18页
During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical propert... During the operation of sandy railways, the challenge posed by wind-blown sand is a persistent issue. An in-depth study on the influence of wind-blown sand content on the macroscopic and microscopic mechanical properties of the ballast bed is of great significance for understanding the potential problems of sandy railways and proposing reasonable and adequate maintenance and repair strategies. Building upon existing research, this study proposes a new assessment indicator for sand content. Utilizing the discrete element method(DEM) and fully considering the complex interactions between ballast and sand particles, three-dimensional(3D) multi-scale analysis models of sandy ballast beds with different wind-blown sand contents are established and validated through field experiments. The effects of varying wind-blown sand content on the microscopic contact distribution and macroscopic mechanical behavior(such as resistance and support stiffness) of ballast beds are carefully analyzed. The results show that with the increase in sand content, the average contact force and coordination number between ballast particles gradually decrease, and the disparity in contact forces between different layers of the ballast bed diminishes. The longitudinal and lateral resistance of the ballast bed initially decreases and then increases, with a critical point at 10% sand content. At 15% sand content, the lateral resistance is mainly shared by the ballast shoulder. The longitudinal resistance sharing ratio is always the largest on the sleeper side, followed by that at the sleeper bottom, and the smallest on the ballast shoulder. When the sand content exceeds 10%, the contribution of sand particles to stiffness significantly increases, leading to an accelerated growth rate of the overall support stiffness of the ballast bed, which is highly detrimental to the long-term service performance of the ballast bed. In conclusion, it is recommended that maintenance and repair operations should be promptly conducted when the sand content of the ballast bed reaches or exceeds 10%. 展开更多
关键词 sandy railway Wind-blown sand content Discrete element method(DEM) Macroscopic and microscopic mechanical properties Maintenance and repair strategies
下载PDF
Structural Modification of Sand Cast Eutectic Al-Si Alloys with Sulfur/Sodium and Its Effect on Mechanical Properties 被引量:1
13
作者 Chikezie W. Onyia Boniface A. Okorie +1 位作者 Simeon I. Neife Camillus S. Obayi 《World Journal of Engineering and Technology》 2013年第2期9-16,共8页
In the present study, the structural modification of sand cast Al-12wt%Si alloy with sulfur/sodium and its effect on mechanical properties were investigated. Different addition levels of sulfur and sodium were used to... In the present study, the structural modification of sand cast Al-12wt%Si alloy with sulfur/sodium and its effect on mechanical properties were investigated. Different addition levels of sulfur and sodium were used to modify and produce castings of the same shape and size from the alloy. The results indicated that the addition of sodium or sulfur to eutectic Al-Si alloy can modify the Al-Si eutectic morphology from needle-like eutectic silicon structure to fine-scale eutectic silicon structure with significant improvement in mechanical properties of the alloy. The optimum levels of modification by sodium flux (60% NaF and 40% NaCl) and sulfur were found to be 0.6% - 1.0% and 0.02% - 0.05% of the weight of the alloy respectively. The alloy modified with 0.6% Na flux had the best mechanical properties closely followed by the one modified with 0.02% sulfur. Over modification of the alloy with sodium produced over modification band which consisted of aluminum dendrites and coarse silicon particles in the microstructure of the alloy. Increase in concentration of sulfur decreased the degree of fineness of the eutectic silicon structure with significant decrease in mechanical properties of the alloy and this is suggested to be as a result of the presence of a brittle sulfur compound at the grain interfaces of the alloy. 展开更多
关键词 Aluminum-Silicon Alloy sand CASTING Modification Morphology Mechanical properties
下载PDF
Effect of reclaimed sand additions on mechanical properties and fracture behavior of furan no-bake resin sand 被引量:3
14
作者 Yan-lei Li Guo-hua Wu +3 位作者 Wen-cai Liu An-tao Chen Liang Zhang Ying-xin Wang 《China Foundry》 SCIE 2017年第2期128-137,共10页
In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the tem... In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the temperature range from 25 to 600 oC. The addition of 20%-100% reclaimed sand showed dramatic strength deterioration effect at the same temperature, which is associated with the formation of bonding bridges. Both the ultimate tensile strength(UTS) and compressive strength(CS) of the moulding sand initially increase with the increase of temperature, and then sharply decrease with the further increase of temperature, which is attributed to the thermal decomposition of furan resin. The addition amount of reclaimed sand has a remarkable effect on the room temperature fracture mode, i.e., with the addition of 0-20% reclaimed sand, the fracture mode was mainly cohesive fracture; the fracture mode converts to be mixture fracture mode as the addition of reclaimed sand increases to 35%-70%; further increasing the addition to 100% results in the fracture mode of typical adhesive fracture. The fracture surface of the bonding bridge changes from a semblance of cotton or holes to smooth with the increase of test temperature. 展开更多
关键词 reclaimed sand mechanical properties thermal decomposition fracture mode
下载PDF
Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation 被引量:2
15
作者 Chang-jiang Ni Gao-chun Lu +1 位作者 Tao Jing Jun-jiao Wu 《China Foundry》 SCIE 2017年第2期121-127,共7页
The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant t... The influence of core sand properties on flow dynamics was investigated synchronously with various core sands, transparent core-box and high-speed camera. To confirm whether the core shooting process has significant turbulence, the flow pattern of sand particles in the shooting head and core box was reproduced with colored core sands. By incorporating the kinetic theory of granular flow(KTGF), kinetic-frictional constitutive correlation and turbulence model, a two-fluid model(TFM) was established to study the flow dynamics of the core shooting process. Two-fluid model(TFM) simulations were then performed and a areasonable agreement was achieved between the simulation and experimental results. Based on the experimental and simulation results, the effects of turbulence, sand density, sand diameter and binder ratio were analyzed in terms of filling process, sand volume fraction(αs) and sand velocity(Vs). 展开更多
关键词 core shooting process sand property binder ratio two-fluid model flow dynamic turbulence
下载PDF
Ceramic Properties of Three Specimens of Alluvial Clays Used in Local Constructions from Mbouda Clay Deposit, West Cameroon
16
作者 Philémon Zo’o Zame Sylvain Kouayep Lawou +3 位作者 Philippe Samba Assomo Audrey Erman Moutsou Yannick Lontchi Dzoti Véronique Kamgang Kabeyene Beyala 《Journal of Minerals and Materials Characterization and Engineering》 2024年第5期265-279,共15页
The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of... The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of constructions using fired bricks or compressed blocks. Unfortunately, these buildings are not strong. This study investigates the causes of the strengthlessness of buildings and suggests solutions to overcome the difficulty. The research content includes field and laboratory studies. The methodology consists of sampling black (AN), white (AB) and red (AR) clays specimens identified in the study area and analysing them simultaneously at MIPROMALO (Cameroon) and at ACME LAB in Vancouver (Canada). The results obtained show a high sand content in the samples AN (64%), AB (55.2%), AR (30.9%). The compressive strength of the built specimens is low at 900˚C considered as the traditional firing temperature AN (0.94 MPa), AB (5.25 MPa), AR (2.18 MPa). The mineralogical series are identically made by kaolinite, chlorite, gibbsite, quartz, muscovite, biotite, goethite, magnetite and hematite. Silica (SiO2) presents higher contents AN (52.87%), AB (48.02%), AR (47.68%) followed by alumina (Al2O3) AN (29.96%), AB (28.13%), AR (24.72%). The other elements are poorly represented. 展开更多
关键词 sand BRICKS Clays Mechanical properties Local Constructions
下载PDF
Non-Darcy Flow in Molding Sands
17
作者 Miguel A. Barron-Meza Joan Reyes-Miranda Daniel Flores-Sanchez 《Open Journal of Applied Sciences》 2024年第4期976-982,共7页
Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this ... Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%. 展开更多
关键词 Darcy’s Law molding sands Non-Darcy Flow Reynolds Number Shape Factor
下载PDF
An innovative tester system for measuring mechanical property of foundry molding sand
18
作者 Zuxi XIE Qingchun XIANG +1 位作者 Xu WANG Dongmei LIU 《China Foundry》 SCIE CAS 2004年第2期99-105,共7页
A new intelligent tester system for measuring multiple mechanical properties of foundry molding sand is introduced and has been patented for the invention in China. The testing process can be simultaneously controlled... A new intelligent tester system for measuring multiple mechanical properties of foundry molding sand is introduced and has been patented for the invention in China. The testing process can be simultaneously controlled with a build-in chip microcomputer communicating with a PC through a serial port. The testing system applies dynamic testing technology. During the measurement for compression, relaxation, shearing and tensile processes of sand specimens, the corresponding characteristic curves and eight mechanical property parameters can be obtained in a short time, simply by consecutively testing on four sand specimens. The properties and parameters to be measurable by the tester include compressive strength, elastic modulus, plastic deformation threshold, springback potential, shear strength, shear deformation limit, toughness and tensile strength. These properties and parameters for sand specimens can be defined as the corresponding characteristic curves with precise physical meanings, carried out by the tester, Two of them, namely plastic deformation threshold and springback potential, as well as their testing methods, have been invented for the first time. The testing system applying advanced data measurement technology as well as performing excellent functions is an important breakthrough and creativity in foundry molding sand property testing field. The parameters acquired by the testing system are stable, accurate and reliable. The test data can be instantly displayed or printed out or stored in the PC. As evidence, many experimental data obtained by the tester practically from both laboratory and foundry floor tests indicate that the tester system can be widely applied in foundry industry. 展开更多
关键词 molding sand mechanical property testing system
下载PDF
Microstructure and properties of nano-TiN modified Ti(C,N)-based cermets fabricated by powder injection molding and die pressing
19
作者 Shan-jie Yi Hai-qing Yin +3 位作者 Ke Chen Dil-Faraz Khan Qing-jun Zheng Xuan-hui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第11期1115-1121,共7页
Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with ... Powder injection molding (PIM) and die pressing were employed to fabricate nano-TiN modified Ti(C,N)- based cermets. The shrinkage behavior, microstructure, porosity, and mechanical properties of the samples with and without nano-TiN addition fabricated by PIM and die pressing were analyzed. It is demonstrated that for either PIM or die pressing, the porosities are obviously reduced, the mechanical properties are significantly improved after adding nano-TiN, and the hard particles are refined; the rim phase thickness obviously becomes thinner, and the number of dimples in fracture also increases. Compared the samples fabricated by die pressing, it is difficult for PIM to obtain dense Ti(C,N)-based cermets. Due to the too much existence of pores and isolated carbon, the mechanical properties of the sintered samples by PIM are inferior to those of the sintered ones by die pressing. 展开更多
关键词 cermets powder injection molding die pressing titanium nitride NANOPARTICLES mechanical properties
下载PDF
Effect of annealing processing on microstructure and properties of Ti-6Al-4V alloy by powder injection molding 被引量:1
20
作者 郭世柏 曲选辉 +5 位作者 向军淮 张荣发 何向明 李明升 多书旺 李文魁 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期701-704,共4页
Ti6A14V alloy parts were prepared by metal injection molding. Brown parts were densified at 1 200-1 260℃for 2-4 h in vacuum atmosphere. The as-sintered specimens were treated through Hot-Isostatic Pressure(HIP) at 96... Ti6A14V alloy parts were prepared by metal injection molding. Brown parts were densified at 1 200-1 260℃for 2-4 h in vacuum atmosphere. The as-sintered specimens were treated through Hot-Isostatic Pressure(HIP) at 960℃and 140 MPa. Ti6A14V alloy compacts were annealed at 720-760℃for 1 h. The results show that binder in the parts can be removed by solvent debinding and thermal debinding process. Ti6A14V alloy has an uniform duplex microstructure with many equiaxedαgrains and a littleβgrains. When the annealing temperature is higher than 800℃, T16A14V alloy has lower mechanical properties.After solution treatment and aging, a typical martensite microstructure can be achieved. 展开更多
关键词 TI6AL4V合金 粉末注射成型 喷射模塑法 退火过程 显微结构 力学性质
下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部