The problem of improving the performance of linear programming(LP) decoding of low-density parity-check(LDPC) codes is considered in this paper.A multistep linear programming(MLP) algorithm was developed for dec...The problem of improving the performance of linear programming(LP) decoding of low-density parity-check(LDPC) codes is considered in this paper.A multistep linear programming(MLP) algorithm was developed for decoding LDPC codes that includes a slight increase in computational complexity.The MLP decoder adaptively adds new constraints which are compatible with a selected check node to refine the results when an error is reported by the original LP decoder.The MLP decoder result is shown to have the maximum-likelihood(ML) certificate property.Simulations with moderate block length LDPC codes suggest that the MLP decoder gives better performance than both the original LP decoder and the conventional sum-product(SP) decoder.展开更多
基金Supported by the National Key Basic Research and Development (973) Program of China (No.2009CB320300)
文摘The problem of improving the performance of linear programming(LP) decoding of low-density parity-check(LDPC) codes is considered in this paper.A multistep linear programming(MLP) algorithm was developed for decoding LDPC codes that includes a slight increase in computational complexity.The MLP decoder adaptively adds new constraints which are compatible with a selected check node to refine the results when an error is reported by the original LP decoder.The MLP decoder result is shown to have the maximum-likelihood(ML) certificate property.Simulations with moderate block length LDPC codes suggest that the MLP decoder gives better performance than both the original LP decoder and the conventional sum-product(SP) decoder.