The impact region of the dactyl club of mantis shrimp features a rare sinusoidally helicoidal architecture,contributing to its efficient impact-resistant characteristics.This study aims to attain bioinspired sinusoida...The impact region of the dactyl club of mantis shrimp features a rare sinusoidally helicoidal architecture,contributing to its efficient impact-resistant characteristics.This study aims to attain bioinspired sinusoidally architected composites from a practical engineering way.Morphological features of plain-woven fabric were characterized,which demonstrated that the interweaving warp and weft yarns exhibited a sinusoidal architecture.Interconnected woven composites were thus employed and helicoidally stacked to achieve the desired structure.Quasi-static three-point bending and low-velocity impact tests were subsequently performed to evaluate their mechanical performance.Under three-point bending condi-tion,the dominant failure mode gradually changed from fiber breakage to delamination with the increase in the pitch angle.Failure displacement and energy absorption of the heli-coidal woven composites were,respectively,43.89%and 141.90%greater than the unidirectional ones.Under low-velo-city impact condition,the damage area of the helicoidal woven composites decreased by 49.66%while the residual strength increased by 10.10%compared with those of the unidirectional ones,exhibiting better damage resistance and tolerance.Also,effects of fiber architecture on mechanical properties were examined.This work will shed light on future design of the next-generation impact-resistant architected composites.展开更多
基金National Natural Science Foundation of China[No.12172025]Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments[No.6142905222707].
文摘The impact region of the dactyl club of mantis shrimp features a rare sinusoidally helicoidal architecture,contributing to its efficient impact-resistant characteristics.This study aims to attain bioinspired sinusoidally architected composites from a practical engineering way.Morphological features of plain-woven fabric were characterized,which demonstrated that the interweaving warp and weft yarns exhibited a sinusoidal architecture.Interconnected woven composites were thus employed and helicoidally stacked to achieve the desired structure.Quasi-static three-point bending and low-velocity impact tests were subsequently performed to evaluate their mechanical performance.Under three-point bending condi-tion,the dominant failure mode gradually changed from fiber breakage to delamination with the increase in the pitch angle.Failure displacement and energy absorption of the heli-coidal woven composites were,respectively,43.89%and 141.90%greater than the unidirectional ones.Under low-velo-city impact condition,the damage area of the helicoidal woven composites decreased by 49.66%while the residual strength increased by 10.10%compared with those of the unidirectional ones,exhibiting better damage resistance and tolerance.Also,effects of fiber architecture on mechanical properties were examined.This work will shed light on future design of the next-generation impact-resistant architected composites.