The tri-propellant thermal propulsion system is one of the hottest subjects in the field of underwater vehicles recently. To improve efficiency of underwater vehicles, a method of radial clearance control of the tri-p...The tri-propellant thermal propulsion system is one of the hottest subjects in the field of underwater vehicles recently. To improve efficiency of underwater vehicles, a method of radial clearance control of the tri-proportion has been proposed. Based on analyzing the factors which influence the pressure decrease and leakage of the tri-proportion controller, a method is used for precision analysis and proportion adjustment by using the median optimizing theory. Analysis results show that accuracy of the proportion controller is dependent on all the leakage, while the leakage is decided by radial clearance and pressure; the leakage can be controlled effectively and the accuracy of the proportion can be improved with the radial clearance control method. The method of accuracy analysis and clearance control has value on the design of various hydraulic motors.展开更多
This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order m...This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.展开更多
A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control...A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.展开更多
Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savin...Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are large, but the control precision and linearity can be improved with feed-forward compensation. With the experimental results of injection water pressure control, the applicability of this WAIM system and the effect of its linear controller are verified. The novel proposed process of WAIM pressure control and study on characteristics of control system contribute to the application of water hydraulic proportional control and WAIM technology.展开更多
Switch electro-hydraulic proportional amplifier(PA) widely employs single switch modulation power driving(SSMPD) or reverse discharging power driving(RDPD) at present. SSMPD has slow dynamic response, and can't...Switch electro-hydraulic proportional amplifier(PA) widely employs single switch modulation power driving(SSMPD) or reverse discharging power driving(RDPD) at present. SSMPD has slow dynamic response, and can't adjust independently the dither signal's amplitude and frequency; RDPD accelerates the current decay; consequently, it increases current ripple and power loss. For the purpose of solving the above mentioned problem, the tri-state modulation power driving(TSMPD) scheme was proposed for improving the performance of power driving. Detailedly, the hardware circuit for the tri-state modulation power driving is designed; the tri-state modulation algorithm is realized by digital signal processor(DSP). The tri-state modulation power driving is investigated by experiments, comparetive experiments among the single switch modulation power driving(SSMPD), reverse discharging power driving(RDPD), and the TSMPD are implemented, and the experimental results demonstrate that the linearity error of TSMDP meets the requirement of PA; the current response of TSMSP is the best; the amplitude of ripple current of the TSMPD can be reduced without increasing frequency of PWM, in addition, dither signal amplitude and frequency can be adjusted independently for each other. It is very meaningful to guide the development of high performance proportional amplifier for high frequency response proportional solenoid.展开更多
Water-assisted injection molding(WAIM),a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving,short cooling circle time and high quality of products.Ex...Water-assisted injection molding(WAIM),a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving,short cooling circle time and high quality of products.Existing research for the process of WAIM has shown that the pressure control of the injecting water is mostly important for the WAIM.However,the proportional pressure control for the WAIM system is quite complex due to the existence of nonlinearities in the water hydraulic system.In order to achieve better pressure control performance of the injecting water to meet the requirements of the WAIM,the proportional pressure control of the WAIM system is investigated both numerically and experimentally.A newly designed water hydraulic system for WAIM is first modeled in AMEsim environment,the load characteristics and the nonlinearities of water hydraulic system are both considered,then the main factors affecting the injecting pressure and load flow rate are extensively studied.Meanwhile,an open-loop model-based compensation control strategy is employed to regulate the water injection pressure and a feedback proportional integrator controller is further adopted to achieve better control performance.In order to verify the AMEsim simulation results WAIM experiment for particular Acrylonitrile Butadiene Styrene(ABS) parts is implemented and the measured experimental data including injecting pressure and flow rate results are compared with the simulation.The good coincidence between experiment and simulation shows that the AMEsim model is accurate,and the tracking performance of the load pressure indicates that the proposed control strategy is effective for the proportional pressure control of the nonlinear WAIM system.The proposed proportional pressure control strategy and the conclusions drawn from simulation and experiment contribute to the application of water hydraulic proportional control and WAIM technology.展开更多
CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities...CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.展开更多
A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance...A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy.展开更多
This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor ro...This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor rotating reference frame. The two resonant controllers are tuned at slip frequencies ωslip+ and ωslip-, respectively. As a result, the positive- and negative-sequence components of the rotor current are fully regulated by the PR controller without involving the positive- and negative-sequence decomposition, which in effect improves the fault ride-through (FRT) capability of the DFIG-based wind power generation system during the period of large transient grid voltage unbalance. Correctness of the theoretical analysis and feasibility of the proposed unbalanced control scheme are validated by simulation on a 1.5-MW DFIG wind power generation system.展开更多
The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limita...The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.展开更多
For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydrauli...For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydraulic forging press.In this study,a nominal diameter 25 mm(DN25)cartridge valve is taken as the research object.A longer concentric cylindrical annular gap is set to effectively prevent the ultra-high-pressure oil from flowing to the pilot stage and a seated valve structure is set to form the linear sealing zone in the closing state of the main valve port.Electric-displacement feedback is adopted to realize precise control of the main valve port flow and the features of this valve are investigated.In order to verify the strength and static and dynamic characteristics,the finite element model and a simulation model of the valve proposed above are built.There is a little deformation which does not affect the main valve spool movement,and the main valve port flow meets the design demands.Then,the prototype of DN2570 TPCV is manufactured and a ultra-high-pressure experimental platform is developed.The experimental results show that the DN2570 TPCV designed in this study has the advantage of fast response,high control precision,and low leakage,which can meet the requirements of LHFPs.展开更多
A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust...A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.展开更多
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr...A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.展开更多
This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stabil...This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.展开更多
The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodo...The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodology, developed combining CFD (computational fluid dynamics) simulations with lumped and distributed numerical modeling, is firstly introduced and tailored by comparing the numerical results with measurements coming from an experimental campaign performed for a wide range of pressure loads and metered flow rates. Then, both the reliability and the limits of the numerical approach are highlighted through a detailed numerical vs. experimental comparison, involving the pressure of the main hydraulic lines, the flow rate through the first section and the local compensator displacement. Finally, the CAE methodology has been applied for assessing the internal ducts hydraulic permeability and the local compensator spring pre-load influence on the control valve metering curves. At the end of this analysis, an optimized design configuration, featuring a maximum controlled volumetric flow rate increased of more than 25%, has been proposed.展开更多
Multilevel inverters are gaining popularity in high power applications. This paper proposes a new ladder type structure of cascaded three-phase multilevel inverter with reduced number of power semiconductor devices wh...Multilevel inverters are gaining popularity in high power applications. This paper proposes a new ladder type structure of cascaded three-phase multilevel inverter with reduced number of power semiconductor devices which is used to drive the induction motor. The ultimate aim of the paper is to produce multiple output levels with minimum number of semiconductor devices. This paper uses only 11 switches along with 3 diodes and 4 asymmetrical sources to produce an output voltage of 21 levels. The modulation technique plays a major role in commutation of the switches. Here we implement the multicarrier level shifting pulse width modulation technique to produce the commutation signals for the inverter. The proposed multilevel inverter is used to drive the three-phase induction motor. The mathematical modeling of three-phase induction motor is done using Simulink. Furthermore the PI and fuzzy logic controllers are also used to produce the reference waveform of the level shifting technique which in turn produces the commutation signals of the proposed multilevel converter. The controllers are used to control the speed of the induction motor. The effectiveness of the proposed system is proved with the help of simulation. The simulation is performed in MATLAB/Simulink. From the simulation results, it shows that the proposed multilevel inverter works properly to generate the multilevel output waveform with minimum number of semiconductor devices. The PI and fuzzy logic controller performances are evaluated using the results which indicate that with the help of controllers the harmonics has been reduced and the speed control of induction motor is achieved under different loading conditions.展开更多
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele...This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.展开更多
During the drilling process,stick-slip vibration of the drill string is mainly caused by the nonlinear friction gen-erated by the contact between the drill bit and the rock.To eliminate the fatigue wear of downhole dr...During the drilling process,stick-slip vibration of the drill string is mainly caused by the nonlinear friction gen-erated by the contact between the drill bit and the rock.To eliminate the fatigue wear of downhole drilling tools caused by stick-slip vibrations,the Fractional-Order Proportional-Integral-Derivative(FOPID)controller is used to suppress stick-slip vibrations in the drill string.Although the FOPID controller can effectively suppress the drill string stick-slip vibration,its structure isflexible and parameter setting is complicated,so it needs to use the cor-responding machine learning algorithm for parameter optimization.Based on the principle of torsional vibration,a simplified model of multi-degree-of-freedom drill string is established and its block diagram is designed.The continuous nonlinear friction generated by cutting rock is described by the LuGre friction model.The adaptive learning strategy of genetic algorithm(GA),particle swarm optimization(PSO)and particle swarm optimization improved(IPSO)by arithmetic optimization(AOA)is used to optimize and adjust the controller parameters,and the drill string stick-slip vibration is suppressed to the greatest extent.The results show that:When slight drill string stick-slip vibration occurs,the FOPID controller optimized by machine learning algorithm has a good effect on suppressing drill string stick-slip vibration.However,the FOPID controller cannot get the drill string system which has fallen into serious stick-slip vibration(stuck pipe)out of trouble,and the machine learning algorithm is required to mark a large amount of data on adjacent Wells to train the model.Set a reasonable range of drilling parameters(weight on bit/drive torque)in advance to avoid severe stick-slip vibration(stuck pipe)in the drill string system.展开更多
An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good p...An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs.展开更多
This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control law...This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control laws can be developed. Global exponential convergence is achieved using logarithmic feedback via a generalized proportional control law, and an appropriate Lyapunov function is constructed to prove the stability. Both the regulation and tracking problems are tackled. Omnidirectional control is discussed as a case study. As the control laws can handle the interconnection between the rotation and translation of a rigid body, they are shown to be more applicable than the conventional method.展开更多
基金supported by CSIS Foundation of China under Grant No.07J4.1.2
文摘The tri-propellant thermal propulsion system is one of the hottest subjects in the field of underwater vehicles recently. To improve efficiency of underwater vehicles, a method of radial clearance control of the tri-proportion has been proposed. Based on analyzing the factors which influence the pressure decrease and leakage of the tri-proportion controller, a method is used for precision analysis and proportion adjustment by using the median optimizing theory. Analysis results show that accuracy of the proportion controller is dependent on all the leakage, while the leakage is decided by radial clearance and pressure; the leakage can be controlled effectively and the accuracy of the proportion can be improved with the radial clearance control method. The method of accuracy analysis and clearance control has value on the design of various hydraulic motors.
文摘This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.
基金This project is supported by National Natural Science Foundation of China (No.50275102)Provincial Foundation for Abroad Return People of Shanxi (No.101045).
文摘A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2006CB705405)National Natural Science Foundation of China (Grant No. 50775199)Zhejiang Provincial Science and Technology Plan Program of China (Grant No. 2007C21057)
文摘Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are large, but the control precision and linearity can be improved with feed-forward compensation. With the experimental results of injection water pressure control, the applicability of this WAIM system and the effect of its linear controller are verified. The novel proposed process of WAIM pressure control and study on characteristics of control system contribute to the application of water hydraulic proportional control and WAIM technology.
基金supported by National Basic Research and Development Program of China (973 Program, Grant No. 2007CB714000)National Natural Science Foundation of China (Grant No. 50875233)
文摘Switch electro-hydraulic proportional amplifier(PA) widely employs single switch modulation power driving(SSMPD) or reverse discharging power driving(RDPD) at present. SSMPD has slow dynamic response, and can't adjust independently the dither signal's amplitude and frequency; RDPD accelerates the current decay; consequently, it increases current ripple and power loss. For the purpose of solving the above mentioned problem, the tri-state modulation power driving(TSMPD) scheme was proposed for improving the performance of power driving. Detailedly, the hardware circuit for the tri-state modulation power driving is designed; the tri-state modulation algorithm is realized by digital signal processor(DSP). The tri-state modulation power driving is investigated by experiments, comparetive experiments among the single switch modulation power driving(SSMPD), reverse discharging power driving(RDPD), and the TSMPD are implemented, and the experimental results demonstrate that the linearity error of TSMDP meets the requirement of PA; the current response of TSMSP is the best; the amplitude of ripple current of the TSMPD can be reduced without increasing frequency of PWM, in addition, dither signal amplitude and frequency can be adjusted independently for each other. It is very meaningful to guide the development of high performance proportional amplifier for high frequency response proportional solenoid.
基金supported by National Natural Science Foundation of China (Grant No. 50775199)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2008AA042703)
文摘Water-assisted injection molding(WAIM),a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving,short cooling circle time and high quality of products.Existing research for the process of WAIM has shown that the pressure control of the injecting water is mostly important for the WAIM.However,the proportional pressure control for the WAIM system is quite complex due to the existence of nonlinearities in the water hydraulic system.In order to achieve better pressure control performance of the injecting water to meet the requirements of the WAIM,the proportional pressure control of the WAIM system is investigated both numerically and experimentally.A newly designed water hydraulic system for WAIM is first modeled in AMEsim environment,the load characteristics and the nonlinearities of water hydraulic system are both considered,then the main factors affecting the injecting pressure and load flow rate are extensively studied.Meanwhile,an open-loop model-based compensation control strategy is employed to regulate the water injection pressure and a feedback proportional integrator controller is further adopted to achieve better control performance.In order to verify the AMEsim simulation results WAIM experiment for particular Acrylonitrile Butadiene Styrene(ABS) parts is implemented and the measured experimental data including injecting pressure and flow rate results are compared with the simulation.The good coincidence between experiment and simulation shows that the AMEsim model is accurate,and the tracking performance of the load pressure indicates that the proposed control strategy is effective for the proportional pressure control of the nonlinear WAIM system.The proposed proportional pressure control strategy and the conclusions drawn from simulation and experiment contribute to the application of water hydraulic proportional control and WAIM technology.
基金University Malaysia Sabah fully funds this research under the grant number F08/PGRG/1908/2019,Ag.Asri Ag.Ibrahim received the grant,sponsors’websites:https://www.u ms.edu.my.Conflicts of Interest。
文摘CSTR(Continuous stirred tank reactor)is employed in process control and chemical industries to improve response characteristics and system efficiency.It has a highly nonlinear characteristic that includes complexities in its control and design.Dynamic performance is compassionate to change in system parameterswhich need more effort for planning a significant controller for CSTR.The reactor temperature changes in either direction from the defined reference value.It is important to note that the intensity of chemical actions inside the CSTR is dependent on the various levels of temperature,and deviation from reference values may cause degradation of biomass quality.Design and implementation of an appropriate adaptive controller for such a nonlinear system are essential.In this paper,a conventional Proportional Integral Derivative(PID)controller is designed.The conventional techniques to deal with constraints suffer severe limitations like it has fixed controller parameters.Hence,A novel method is applied for computing the PID controller parameters using a swarm algorithm that overcomes the conventional controller’s limitation.In the proposed technique,PID parameters are tuned by Particle Swarm Optimization(PSO).It is not easy to choose the suitable objective function to design a PID controller using PSO to get an optimal response.In this article,a multi-objective function is proposed for PSO based controller design of CSTR.
文摘A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy.
基金Project (No. 50577056) supported by the National Natural ScienceFoundation of China
文摘This paper proposes an adaptive rotor current controller for doubly-fed induction generator (DFIG), which consists of a proportional (P) controller and two harmonic resonant (R) controllers implemented in the rotor rotating reference frame. The two resonant controllers are tuned at slip frequencies ωslip+ and ωslip-, respectively. As a result, the positive- and negative-sequence components of the rotor current are fully regulated by the PR controller without involving the positive- and negative-sequence decomposition, which in effect improves the fault ride-through (FRT) capability of the DFIG-based wind power generation system during the period of large transient grid voltage unbalance. Correctness of the theoretical analysis and feasibility of the proposed unbalanced control scheme are validated by simulation on a 1.5-MW DFIG wind power generation system.
基金funded by the National Natural Science Foundation of China(61973175,62073177 and 61973172)South African National Research Foundation(132797)+2 种基金South African National Research Foundation Incentive(114911)Eskom Tertiary Education Support Programme Grant of South AfricaTianjin Research Innovation Project for Postgraduate Students(2021YJSB018,2020YJSB003)。
文摘The high-purity distillation column system is strongly nonlinear and coupled,which makes it difficult to control.Active disturbance rejection control(ADRC)has been widely used in distillation systems,but it has limitations in controlling distillation systems with large time delays since ADRC employs ESO and feedback control law to estimate the total disturbance of the system without considering the large time delays.This paper designs a proportion integral-type active disturbance rejection generalized predictive control(PI-ADRGPC)algorithm to control the distillation column system with large time delay.It replaces the PD controller in ADRC with a proportion integral-type generalized predictive control(PI-GPC),thereby improving the performance of control systems with large time delays.Since the proposed controller has many parameters and is difficult to tune,this paper proposes to use the grey wolf optimization(GWO)to tune these parameters,whose structure can also be used by other intelligent optimization algorithms.The performance of GWO tuned PI-ADRGPC is compared with the control performance of GWO tuned ADRC method,multi-verse optimizer(MVO)tuned PI-ADRGPC and MVO tuned ADRC.The simulation results show that the proposed strategy can track reference well and has a good disturbance rejection performance.
基金Supported by the Natural Science Foundation of Hebei Province(E2018203028)。
文摘For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydraulic forging press.In this study,a nominal diameter 25 mm(DN25)cartridge valve is taken as the research object.A longer concentric cylindrical annular gap is set to effectively prevent the ultra-high-pressure oil from flowing to the pilot stage and a seated valve structure is set to form the linear sealing zone in the closing state of the main valve port.Electric-displacement feedback is adopted to realize precise control of the main valve port flow and the features of this valve are investigated.In order to verify the strength and static and dynamic characteristics,the finite element model and a simulation model of the valve proposed above are built.There is a little deformation which does not affect the main valve spool movement,and the main valve port flow meets the design demands.Then,the prototype of DN2570 TPCV is manufactured and a ultra-high-pressure experimental platform is developed.The experimental results show that the DN2570 TPCV designed in this study has the advantage of fast response,high control precision,and low leakage,which can meet the requirements of LHFPs.
基金This project is supported by Provincial Natural Science Foundation of Zhejiang(No.502088).
文摘A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.
基金Project supported bY the National Natural Science Foundation of China (Grant No.50375085), and the Natural Science Foundation of Shandong Province (Grant No.Y2002F13)
文摘A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.
文摘This paper presents the model of a SVC (Static VAR Compensator) which is controlled externally by a PI (Proportional Integral) & PD (Proportional Differential) controllers for the improvements of voltage stability and damping effect of an on line power system. Both controller parameters has been optimized by using Ziegler-Nichols close loop tuning method. Both single phase and three phase (L-L) faults have been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in four steps; without SVC, With SVC but no externally controlled, SVC with PI controller & SVC with PD controller. Simulation result shows that without SVC, the system parameters become unstable during faults. When SVC is imposed in the network, then system parameters become stable. Again, when SVC is controlled externally by PI & PD controllers, then system parameters becomes stable in faster way then without controller. It has been observed that the SVC ratings are only 50 MVA with controllers and 200 MVA without controllers. So, SVC with PI & PD controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. The power system oscillations are also reduced with controllers in compared to that of without controllers. So with both controllers the system performance is greatly enhanced.
文摘The paper deals with the simulation and the experimental verification of the hydraulic behavior of an electro-hydraulic load-sensing proportional control valve. An innovative CAE (computer aided engineering) methodology, developed combining CFD (computational fluid dynamics) simulations with lumped and distributed numerical modeling, is firstly introduced and tailored by comparing the numerical results with measurements coming from an experimental campaign performed for a wide range of pressure loads and metered flow rates. Then, both the reliability and the limits of the numerical approach are highlighted through a detailed numerical vs. experimental comparison, involving the pressure of the main hydraulic lines, the flow rate through the first section and the local compensator displacement. Finally, the CAE methodology has been applied for assessing the internal ducts hydraulic permeability and the local compensator spring pre-load influence on the control valve metering curves. At the end of this analysis, an optimized design configuration, featuring a maximum controlled volumetric flow rate increased of more than 25%, has been proposed.
文摘Multilevel inverters are gaining popularity in high power applications. This paper proposes a new ladder type structure of cascaded three-phase multilevel inverter with reduced number of power semiconductor devices which is used to drive the induction motor. The ultimate aim of the paper is to produce multiple output levels with minimum number of semiconductor devices. This paper uses only 11 switches along with 3 diodes and 4 asymmetrical sources to produce an output voltage of 21 levels. The modulation technique plays a major role in commutation of the switches. Here we implement the multicarrier level shifting pulse width modulation technique to produce the commutation signals for the inverter. The proposed multilevel inverter is used to drive the three-phase induction motor. The mathematical modeling of three-phase induction motor is done using Simulink. Furthermore the PI and fuzzy logic controllers are also used to produce the reference waveform of the level shifting technique which in turn produces the commutation signals of the proposed multilevel converter. The controllers are used to control the speed of the induction motor. The effectiveness of the proposed system is proved with the help of simulation. The simulation is performed in MATLAB/Simulink. From the simulation results, it shows that the proposed multilevel inverter works properly to generate the multilevel output waveform with minimum number of semiconductor devices. The PI and fuzzy logic controller performances are evaluated using the results which indicate that with the help of controllers the harmonics has been reduced and the speed control of induction motor is achieved under different loading conditions.
文摘This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.
基金This research was funded by the National Natural Science Foundation of China(51974052)(51804061)the Chongqing Research Program of Basic Research and Frontier Technology(cstc2019jcyj-msxmX0199).
文摘During the drilling process,stick-slip vibration of the drill string is mainly caused by the nonlinear friction gen-erated by the contact between the drill bit and the rock.To eliminate the fatigue wear of downhole drilling tools caused by stick-slip vibrations,the Fractional-Order Proportional-Integral-Derivative(FOPID)controller is used to suppress stick-slip vibrations in the drill string.Although the FOPID controller can effectively suppress the drill string stick-slip vibration,its structure isflexible and parameter setting is complicated,so it needs to use the cor-responding machine learning algorithm for parameter optimization.Based on the principle of torsional vibration,a simplified model of multi-degree-of-freedom drill string is established and its block diagram is designed.The continuous nonlinear friction generated by cutting rock is described by the LuGre friction model.The adaptive learning strategy of genetic algorithm(GA),particle swarm optimization(PSO)and particle swarm optimization improved(IPSO)by arithmetic optimization(AOA)is used to optimize and adjust the controller parameters,and the drill string stick-slip vibration is suppressed to the greatest extent.The results show that:When slight drill string stick-slip vibration occurs,the FOPID controller optimized by machine learning algorithm has a good effect on suppressing drill string stick-slip vibration.However,the FOPID controller cannot get the drill string system which has fallen into serious stick-slip vibration(stuck pipe)out of trouble,and the machine learning algorithm is required to mark a large amount of data on adjacent Wells to train the model.Set a reasonable range of drilling parameters(weight on bit/drive torque)in advance to avoid severe stick-slip vibration(stuck pipe)in the drill string system.
基金Supported by the National Natural Science Foundation of China(50675098,50735002)~~
文摘An ultrasonic motor (USM) is difficlt to be mathematically described because of its complex energy conversion and nonlinear parameters from increasing temperature and changing operating conditions. To achieve good performance of a three-joint robot directly driven by USM, according to the operating characteristics of USM, a new position-velocity feedback control strategy is proposed. In the control strategy, there are a total of 18 controller gains to he tuned. Through a series of "Design of Experiments" by the robust parameter design, an optimal and robust set of proportional integral derivative (PID) controller gains is obtained. Results show that the control strategy can achieve the best performance of the robot and the robust parameter design is effective and convenient to USMs.
文摘This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control laws can be developed. Global exponential convergence is achieved using logarithmic feedback via a generalized proportional control law, and an appropriate Lyapunov function is constructed to prove the stability. Both the regulation and tracking problems are tackled. Omnidirectional control is discussed as a case study. As the control laws can handle the interconnection between the rotation and translation of a rigid body, they are shown to be more applicable than the conventional method.