Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage...Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.展开更多
The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and...The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process展开更多
Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller i...Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.展开更多
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surf...A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.展开更多
To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID co...To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.展开更多
This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fraction...This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
This paper presents the application of the proportional-integral-derivative (PID) controller to the flight control system (FCS) for two-dimensional (2D) differential geometric (DG) guidance and control problem...This paper presents the application of the proportional-integral-derivative (PID) controller to the flight control system (FCS) for two-dimensional (2D) differential geometric (DG) guidance and control problem. In particular, the performance of the designed FCS is investigated. To this end, the commanded angle-of-attack is firstly developed in the time domain using the classical DG formulations. Then, the classical PID controller is introduced to develop a FCS so as to form the 2D DG guidance and control system, and the PID controller parameters are determined by the Ziegler-Nichols method as well as the Routh-Hurwitz stability algorithm to guarantee the convergence of the system error. The results demonstrate that the designed controller yields a fast responding system, and the resulting DG guidance and control system is viable and effective in a realistic missile defense engagement.展开更多
A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal ...A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller.展开更多
An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an externa...An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.展开更多
The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consist...The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change.展开更多
An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control...An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.展开更多
An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line p...An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.展开更多
A new approach to control, stabilization and disturbance rejection of attitude subsystem of quadrotor is presented in this article. Analytical method is used to tune conventional structure of PID controller. SISO appr...A new approach to control, stabilization and disturbance rejection of attitude subsystem of quadrotor is presented in this article. Analytical method is used to tune conventional structure of PID controller. SISO approach is implemented for control structure to achieve desired objectives. The performance of the designed control structure is evaluated through time domain factors such as overshoot, settling time and integral error index, and robustness. A comparison is done between designed controller and back-step controller applied to main model of quadrotor. The results of simulation show the effectiveness of designed control scheme.展开更多
As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor ...As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.展开更多
This job focuses on the stroke regulation of a class of high-precision metering pumps.A parametertuning method of robust non-fragile PID(proportional-integral-derivative)controllers is proposed with the assumption t...This job focuses on the stroke regulation of a class of high-precision metering pumps.A parametertuning method of robust non-fragile PID(proportional-integral-derivative)controllers is proposed with the assumption that a PID controller has additive gain perturbations.An H-infinite robust PID controller can be obtained by solving a linear matrix inequality.This approach can guarantee that the closed-loop control systems is asymptotically stable and the H-infinite norm of the transfer function from the disturbance to the output of a controlled system is less than a given constant to attenuate disturbances.The simulation case shows that the control performance of the proposed strategy is significantly better than the traditional PID approach in the situation with perturbations of controller parameters.展开更多
It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejec...It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.展开更多
A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult ...A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.展开更多
A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so tha...A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so that the auto-tuningof controllers’ parameters in a 2×2 MVCS can be turned into that of two independentsingle-loop control systems(SLCS).The method presented in the paper has success-fully been used in a simulation experiment on the automatic tuning of a coordinatedcontrol system(CCS)in the drum-boiler turbogenerating unit(DBTU)and the simu-lation results axe satisfactory.展开更多
基金the Malaysian Ministry of Higher Education(MOHE)for their support through the Fundamental Research Grant Scheme(FRGS/1/2021/ICT02/UMP/03/3)(UMPSA Reference:RDU 210117)。
文摘Automatic voltage regulators(AVR)are designed to manipulate a synchronous generator’s voltage level automatically.Proportional integral derivative(PID)controllers are typically used in AVR systems to regulate voltage.Although advanced PID tuning methods have been proposed,the actual voltage response differs from the theoretical predictions due to modeling errors and system uncertainties.This requires continuous fine tuning of the PID parameters.However,manual adjustment of these parameters can compromise the stability and robustness of the AVR system.This study focuses on the online self-tuning of PID controllers called indirect design approach-2(IDA-2)in AVR systems while preserving robustness.In particular,we indirectly tune the PID controller by shifting the frequency response.The new PID parameters depend on the frequency-shifting constant and the previously optimized PID parameters.Adjusting the frequency-shifting constant modifies all the PID parameters simultaneously,thereby improving the control performance and robustness.We evaluate the robustness of the proposed online PID tuning method by comparing the gain margins(GMs)and phase margins(PMs)with previously optimized PID parameters during parameter uncertainties.The proposed method is further evaluated in terms of disturbance rejection,measurement noise,and frequency response analysis during parameter uncertainty calculations against existing methods.Simulations show that the proposed method significantly improves the robustness of the controller in the AVR system.In summary,online self-tuning enables automated PID parameter adjustment in an AVR system,while maintaining stability and robustness.
基金the Key Technologies R&D Program of Harbin (0111211102).
文摘The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process
基金Supported by the Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘Active disturbance rejection controller(ADRC)uses tracking-differentiator(TD)to solve the contradiction between the overshoot and the rapid nature.Fractional order proportion integral derivative(PID)controller improves the control quality and expands the stable region of the system parameters.ADRC fractional order(ADRFO)PID controller is designed by combining ADRC with the fractional order PID and applied to reentry attitude control of hypersonic vehicle.Simulation results show that ADRFO PID controller has better control effect and greater stable region for the strong nonlinear model of hypersonic flight vehicle under the influence of external disturbance,and has stronger robustness against the perturbation in system parameters.
文摘A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experimental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as compared with the classical PID controller and the compensator controller.
基金the National Natural Science Foundation of China (60375001)the Scientific Research Foundation of Hunan Provincial Education Department (05B016).
文摘To determine the optimal or near optimal parameters of PID controller with incomplete derivation, a novel design method based on differential evolution (DE) algorithm is presented. The controller is called DE-PID controller. To overcome the disadvantages of the integral performance criteria in the frequency domain such as IAE, ISE, and ITSE, a new performance criterion in the time domain is proposed. The optimization procedures employing the DE algorithm to search the optimal or near optimal PID controller parameters of a control system are demonstrated in detail. Three typical control systems are chosen to test and evaluate the adaptation and robustness of the proposed DE-PID controller. The simulation results show that the proposed approach has superior features of easy implementation, stable convergence characteristic, and good computational efficiency. Compared with the ZN, GA, and ASA, the proposed design method is indeed more efficient and robust in improving the step response of a control system.
文摘This paper proposes a methodology for the quantitative robustness evaluation of PID controllers employed in a DC motor. The robustness analysis is performed employing a 2~3 factorial experimental design for a fractional order proportional integral and derivative controller(FOPID), integer order proportional integral and derivative controller(IOPID)and the Skogestad internal model control controller(SIMC). The factors assumed in experiment are the presence of random noise,external disturbances in the system input and variable load. As output variables, the experimental design employs the system step response and the controller action. Practical implementation of FOPID and IOPID controllers uses the MATLAB stateflow toolbox and a NI data acquisition system. Results of the robustness analysis show that the FOPID controller has a better performance and robust stability against the experiment factors.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.
基金Throughout this paper, the word velocity will only be used to designate a vector quantitythe corresponding scalar will be denoted asspeed
文摘This paper presents the application of the proportional-integral-derivative (PID) controller to the flight control system (FCS) for two-dimensional (2D) differential geometric (DG) guidance and control problem. In particular, the performance of the designed FCS is investigated. To this end, the commanded angle-of-attack is firstly developed in the time domain using the classical DG formulations. Then, the classical PID controller is introduced to develop a FCS so as to form the 2D DG guidance and control system, and the PID controller parameters are determined by the Ziegler-Nichols method as well as the Routh-Hurwitz stability algorithm to guarantee the convergence of the system error. The results demonstrate that the designed controller yields a fast responding system, and the resulting DG guidance and control system is viable and effective in a realistic missile defense engagement.
基金This work was supported by the National Natural Science Foundation of China (No. 50275150)the Foundation of Robotics Laboratory, Chinese Academy of Sciences( No. RL200002).
文摘A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller.
文摘An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.
文摘The performance of the designed digital electro-pneumatic cabin pressure control system for the cabin pressure schedule of transport aircraft is investigated.For the purpose of this study,an experimental setup consisting of a simulated hermetic cabin and altitude simulation chamber is configured for cabin pressure control system operation.A series of experimental tests are executed to evaluate the performance of the cabin pressure control system.The parameters of the PID controller are optimized.In the optimization process,the variation regularity of the rate of cabin pressure change under various conditions is considered.An approach to prioritize the control of the rate of change of cabin pressure based on the flight status model is proposed and verified experimentally.The experimental results indicate that the proposed approach can be adopted for the designed digital electro-pneumatic cabin pressure control system to obtain a better cabin pressure schedule and rate of cabin pressure change.
基金Project(70473068) supported by the National Natural Science Foundation of ChinaProject(05JZD00024) supported by the Major Subject of Ministry of Education, China
文摘An analytical tuning method was proposed for fuzzy PID controller used in Smith predictor in order to extend its application and improve its robustness. The fuzzy PID controller was expressed as a sliding mode control. Based on Lyapunov theory, Smith predictor was analyzed in time domain. The parameters of the fuzzy PID controller can be obtained using traditional linear control theory and sliding mode control theory. The simulation experiments were implemented. The simulation results show that the control performance, robustness and stability of the fuzzy PID controller are better than those of the PID controller in Smith predictor.
基金Project (50275150) supported by the National Natural Science Foundation of ChinaProject (RL200002) supported by the Foundation of the Robotics Laboratory, Chinese Academy of Sciences
文摘An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.
文摘A new approach to control, stabilization and disturbance rejection of attitude subsystem of quadrotor is presented in this article. Analytical method is used to tune conventional structure of PID controller. SISO approach is implemented for control structure to achieve desired objectives. The performance of the designed control structure is evaluated through time domain factors such as overshoot, settling time and integral error index, and robustness. A comparison is done between designed controller and back-step controller applied to main model of quadrotor. The results of simulation show the effectiveness of designed control scheme.
文摘As for the application of electronic fuel injection (EFI) system to small gasoline generator set, mechanical speed controller cannot be coupled with EFI system and has the shortcomings of lagged regulation and poor accuracy, a feed-forward control strategy based on load combined with proportional-integral-differential (PID) control strategy was proposed, and a digital speed controller applied to the electrical control system was designed. The detailed control strategy of the controller was intro- duced. The hardware design for the controller and the key circuits of motor driving, current sampling and angular signal captu- ring were given, and software architecture was discussed. Combined with a gasoline generator set mounted with EFI system, the controller parameters were tuned and optimized empirically by hardware in loop and bench test methods. Test results show that the speed deviation of generator set is low and the control system is stable in steady state; In transient state the control system responses quickly, has high stability under mutation loads especially when suddenly apply and remove 100% load, the speed deviation is within 8% of reference speed and the transient time is less than 5 s, satisfying the ISO standard.
基金Supported by the National Natural Science Foundation of China(60604015) the Key Research Program of Education Department of Zhejiang Province(Z200803521)
文摘This job focuses on the stroke regulation of a class of high-precision metering pumps.A parametertuning method of robust non-fragile PID(proportional-integral-derivative)controllers is proposed with the assumption that a PID controller has additive gain perturbations.An H-infinite robust PID controller can be obtained by solving a linear matrix inequality.This approach can guarantee that the closed-loop control systems is asymptotically stable and the H-infinite norm of the transfer function from the disturbance to the output of a controlled system is less than a given constant to attenuate disturbances.The simulation case shows that the control performance of the proposed strategy is significantly better than the traditional PID approach in the situation with perturbations of controller parameters.
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of PetroleumMinerals (KFUPM) for funding this work through project number 11-ENE1643-04 as part of the Notional Science Technology and Innovation Plan
文摘It is well-known that the IMC-PID controller tuning gives fast and improved set point response but slow disturbance rejection. A modification has been proposed in IMC-PID tuning rule for the improved disturbance rejection. For the modified IMC-PID tuning rule, a method has been developed to obtain the IMC-PID setting in closed-loop mode without acquiring detailed information of the process. The proposed method is based on the closed-loop step set point experiment using a proportional only controller with gain K_(c0). It is the direct approach to find the PID controller setting similar to classical Ziegler-Nichols closed-loop method. Based on simulations of a wide range of first-order with delay processes, a simple correlation has been derived to obtain the modified IMC-PID controller settings from closed-loop experiment. In this method, controller gain is a function of the overshoot obtained in the closed loop set point experiment. The integral and derivative time is mainly a function of the time to reach the first peak(overshoot). Simulation has been conducted for the broad class of processes and the controllers were tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison. The PID controller settings obtained in the proposed tuning method show better performance and robustness with other two-step tuning methods for the broad class of processes. It has also been applied to temperature control loop in distillation column model. The result has been compared to the open loop tuning method where it gives robust and fast response.
文摘A new discretization scheme is proposed for the design of a fractional order PID controller. In the design of a fractional order controller the interest is mainly focused on the s-domain, but there exists a difficult problem in the s-domain that needs to be solved, i.e. how to calculate fractional derivatives and integrals efficiently and quickly. Our scheme adopts the time domain that is well suited for Z-transform analysis and digital implementation. The main idea of the scheme is based on the definition of Grünwald-Letnicov fractional calculus. In this case some limited terms of the definition are taken so that it is much easier and faster to calculate fractional derivatives and integrals in the time domain or z-domain without loss much of the precision. Its effectiveness is illustrated by discretization of half-order fractional differential and integral operators compared with that of the analytical scheme. An example of designing fractional order digital controllers is included for illustration, in which different fractional order PID controllers are designed for the control of a nonlinear dynamic system containing one of the four different kinds of nonlinear blocks: saturation, deadzone, hysteresis, and relay.
文摘A method of measuring the interactions in a multivariable control sys-tem(MVCS)in time domain is defined in this paper.An intelligent decoupling com-pensator is designed in terms of the concept of fuzzy control,so that the auto-tuningof controllers’ parameters in a 2×2 MVCS can be turned into that of two independentsingle-loop control systems(SLCS).The method presented in the paper has success-fully been used in a simulation experiment on the automatic tuning of a coordinatedcontrol system(CCS)in the drum-boiler turbogenerating unit(DBTU)and the simu-lation results axe satisfactory.