Present paper deals with propylene oxide production from propylene utilizing Methylomonas sp.GYJ3 immobilized by adsorption or gel entrapment in a continuous gas flow packed bed bioreactor.The regeneration of biocatal...Present paper deals with propylene oxide production from propylene utilizing Methylomonas sp.GYJ3 immobilized by adsorption or gel entrapment in a continuous gas flow packed bed bioreactor.The regeneration of biocatalyst in situ is al- so discussed.展开更多
The separation of propylene and propane is an important but challenging process,primarily achieved through energy-intensive distillation technology in the petrochemical industry.Here,we reported two natural C4linkers ...The separation of propylene and propane is an important but challenging process,primarily achieved through energy-intensive distillation technology in the petrochemical industry.Here,we reported two natural C4linkers based metal–organic frameworks(MIP-202 and MIP-203)for C_(3)H_(6)/C_(3)H_(8)separation.Adsorption isotherms and selectivity calculations were performed to study the adsorption performance for C_(3)H_(6)/C_(3)H_(8)separation.Results show that C_(3)H_(6)/C_(3)H_(8)uptake ratios(298 K,100 kPa)for MIP-202 and MIP-203 are 2.34 and 7.4,respectively.C_(3)H_(6)/C_(3)H_(8)uptake ratio(303 K,100 k Pa)for MIP-203 is up to50.0.The mechanism for enhanced separation performance of C_(3)H_(6)/C_(3)H_(8)on MIP-203 at higher temperature(303 K)was revealed by the in situ PXRD characterization.The adsorption selectivities of C_(3)H_(6)/C_(3)H_(8)on MIP-202 and MIP-203(298 K,100 k Pa)are 8.8 and 551.4,respectively.The mechanism for the preferential adsorption of C_(3)H_(6)over C_(3)H_(8)in MIP-202 and MIP-203 was revealed by the Monte Carlo simulation.The cost of organic ligands for MIP-202 and MIP-203 was lower than that of organic ligands for those top-performance MOFs.Our work sets a new benchmark for C_(3)H_(6)sorbents with high adsorption selectivities.展开更多
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the ...Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.展开更多
When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the g...When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.展开更多
Poly(propylene carbonate) (PPC), the copolymerization product of carbon dioxide and propylene oxide, was chlorinated for the first time in our laboratory. Nuclear magnetic resonance (NMR) spectroscopy and ion ch...Poly(propylene carbonate) (PPC), the copolymerization product of carbon dioxide and propylene oxide, was chlorinated for the first time in our laboratory. Nuclear magnetic resonance (NMR) spectroscopy and ion chromatography test showed that chlorine atoms were successfully introduced onto the polymer chains of PPC. We named this newborn polymer material as chlorinated poly(propylene carbonate) (CPPC). It is worth noting that the reaction conditions of the chlorination of PPC were quite mild, which could be easily and simply realized at industrial level. What is more important is that CPPC possessed many more distinguished properties in solubility, wettability, adhesiveness, and gas barrier compared with PPC. For example, the bonding strength of CPPC as thermal adhesive is nearly four times higher than that of PPC for wood, stainless steel and glass. The oxygen permeability coefficient of CPPC exhibits a decrease of 33% compared with that of PPC. Moreover, CPPC is quite stable in air, whereas it could be well biodegraded in soil compared with PPC. These results indicated that CPPC could be widely used in the fields of coating, adhesive, barrier materials and so on, which could greatly promote the development of PPC industry.展开更多
In the attempt to reduce surface free energy of silica to improve interaction of silica with silver, silica was doped by different amounts of low surface energy lanthanum, La_2O_3, through impregnation. The doped and ...In the attempt to reduce surface free energy of silica to improve interaction of silica with silver, silica was doped by different amounts of low surface energy lanthanum, La_2O_3, through impregnation. The doped and undoped silica were used as supports for preparation of Na/Ag/Mo/La_2O_3-SiO_2 catalysts. Catalytic performances of the catalysts were evaluated in direct epoxidation of propylene(DPO) using molecular oxygen under atmospheric pressure and without adding hydrogen. Adding 5 wt%La to the Na/Ag/Mo/SiO_2 catalyst improves both the catalysts electivity in DPO and its stability over 20h of time-on-stream.The characterization results show that La_2O_3 species interact strongly with silver particles on the silica surface which result in significant improvement in the dispersion profile of silver and marked decrease in the size of silver nanoparticles(AgNPs). The estimated mean diameter of AgNPs is ca. 4.0 nm in Na/Ag/Mo/5 wt%La_2O_3-SiO_2, which is smaller than that(53.9 nm) found in Na/Ag/SiO_2. The presence of subnanometer AgNPs on Ag/La_2O_3-SiO_2 prior addition of MoO_3 and NaCl to the sample can enhance the mutual electronic synergism between Ag, MoO_3 and Na for selective production of propylene oxide.展开更多
通过自建实验台模拟瓦斯全循环油页岩干馏工艺并进行积碳实验,利用气相色谱仪对积碳反应前后瓦斯气组分性质进行分析。使用丙烯为碳源气,观察不同工况下(反应时间、壁面温度、气体流量)的积碳现象。结果表明:瓦斯气中主要积碳母体为烯烃...通过自建实验台模拟瓦斯全循环油页岩干馏工艺并进行积碳实验,利用气相色谱仪对积碳反应前后瓦斯气组分性质进行分析。使用丙烯为碳源气,观察不同工况下(反应时间、壁面温度、气体流量)的积碳现象。结果表明:瓦斯气中主要积碳母体为烯烃,含量最高为丙烯。积碳量随反应时间和壁面温度(800℃以下)的增加而增加,随气体流量的增加而变化,流量达到30 m L·min^(-1)后积碳量开始减少。各工况对积碳现象的影响程度依次是反应时间>气体流量>壁面温度。展开更多
Methane, CH4, here represents natural gas (NG) of which it is the main constituent. Routes of chemical utilisation of NG - as opposed to energy usage - are discussed. A main step is the conversion of NG to synthesis g...Methane, CH4, here represents natural gas (NG) of which it is the main constituent. Routes of chemical utilisation of NG - as opposed to energy usage - are discussed. A main step is the conversion of NG to synthesis gas, a mixture of CO and H2. Simple molecules derived from synthesis gas, like methanol, can be further reacted to longer-chained hydrocarbons like propylene and other olefins and even to gasoline and diesel.展开更多
通过自建实验台模拟瓦斯全循环油页岩干馏工艺并进行积炭实验,以丙烯为碳源气,考察反应时间、壁面温度和气体流量对积炭的影响。结果表明,积炭量随反应时间和壁面温度(800℃以下)的增加而增加,随气体流量的增加先增加,流量达到30 m L/mi...通过自建实验台模拟瓦斯全循环油页岩干馏工艺并进行积炭实验,以丙烯为碳源气,考察反应时间、壁面温度和气体流量对积炭的影响。结果表明,积炭量随反应时间和壁面温度(800℃以下)的增加而增加,随气体流量的增加先增加,流量达到30 m L/min后积炭量开始减少。各因素对积炭的影响程度从大到小依次为反应时间、气体流量和壁面温度,且各因素间无交互作用。展开更多
Sanhu depression of Qaidam Basin is the largest biogenic gas production region in China.Headspace samples were collected from two wells in this region,and hydrogen and propylene compounds were detected in these sample...Sanhu depression of Qaidam Basin is the largest biogenic gas production region in China.Headspace samples were collected from two wells in this region,and hydrogen and propylene compounds were detected in these samples with a certain concentration.The stable hydrogen isotope ratio of H 2 is relatively light (-700‰--820‰).The stable carbon isotope ratio of propylene ranges from -27‰ to -40‰,which coincides with the rule of change of the stable carbon isotope of kerogen at the corresponding horizon.The characteristic analysis of sediments,structures,and Ar and He components in the region indicates that these microelement compounds are the product of degradation of organic substances by microorganisms,rather than from the mantle source,inorganic reaction or other sources.Detection of these components provides solid evidence for the strong ongoing methanogenesis in this region.展开更多
文摘Present paper deals with propylene oxide production from propylene utilizing Methylomonas sp.GYJ3 immobilized by adsorption or gel entrapment in a continuous gas flow packed bed bioreactor.The regeneration of biocatalyst in situ is al- so discussed.
基金the financial support from National Natural Science Foundation of China(22108034,21878101)Guangdong Basic and Applied Basic Research Foundation(2020A1515110945,2020A1515110234,2021A1515011336 and 2020A1515110325)+4 种基金National Key Research and Development Program(2019YFC1805804)Guangdong Natural Science Foundation(2017A030313052)Key Program of Marine Economy Development(Six Marine Industries)Special Foundation of Department of Natural Resources of Guangdong Province(GDNRC[2020]036)Characteristic Innovation Research Project of University Teachers(2020XCC08)Foshan Engineering and Technology Research Center for Novel Porous Materials。
文摘The separation of propylene and propane is an important but challenging process,primarily achieved through energy-intensive distillation technology in the petrochemical industry.Here,we reported two natural C4linkers based metal–organic frameworks(MIP-202 and MIP-203)for C_(3)H_(6)/C_(3)H_(8)separation.Adsorption isotherms and selectivity calculations were performed to study the adsorption performance for C_(3)H_(6)/C_(3)H_(8)separation.Results show that C_(3)H_(6)/C_(3)H_(8)uptake ratios(298 K,100 kPa)for MIP-202 and MIP-203 are 2.34 and 7.4,respectively.C_(3)H_(6)/C_(3)H_(8)uptake ratio(303 K,100 k Pa)for MIP-203 is up to50.0.The mechanism for enhanced separation performance of C_(3)H_(6)/C_(3)H_(8)on MIP-203 at higher temperature(303 K)was revealed by the in situ PXRD characterization.The adsorption selectivities of C_(3)H_(6)/C_(3)H_(8)on MIP-202 and MIP-203(298 K,100 k Pa)are 8.8 and 551.4,respectively.The mechanism for the preferential adsorption of C_(3)H_(6)over C_(3)H_(8)in MIP-202 and MIP-203 was revealed by the Monte Carlo simulation.The cost of organic ligands for MIP-202 and MIP-203 was lower than that of organic ligands for those top-performance MOFs.Our work sets a new benchmark for C_(3)H_(6)sorbents with high adsorption selectivities.
基金financially supported by the National Natural Science Foundation of China(No.21376276)the Specialfunded Program on National Key Scientific Instruments and Equipment Development of China(No.2012YQ230043)+1 种基金Guangdong Province Sci&Tech Bureau(Key Strategic Project No.2008A080800024)the Fundamental Research Funds for the Central Universities
文摘Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.
基金Basic research program of Shanxi Province(20210302124136 and 20210302123177)National Key R&D Program of China(2019YFA0705501)+1 种基金Key R&D and promotion projects in Henan Province(212102310010)National Natural Science Foundation of China(52104144,U23B2088).
文摘When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.
基金This work was financially supported by the National Natural Science Foundation of China(No.51673195).
文摘Poly(propylene carbonate) (PPC), the copolymerization product of carbon dioxide and propylene oxide, was chlorinated for the first time in our laboratory. Nuclear magnetic resonance (NMR) spectroscopy and ion chromatography test showed that chlorine atoms were successfully introduced onto the polymer chains of PPC. We named this newborn polymer material as chlorinated poly(propylene carbonate) (CPPC). It is worth noting that the reaction conditions of the chlorination of PPC were quite mild, which could be easily and simply realized at industrial level. What is more important is that CPPC possessed many more distinguished properties in solubility, wettability, adhesiveness, and gas barrier compared with PPC. For example, the bonding strength of CPPC as thermal adhesive is nearly four times higher than that of PPC for wood, stainless steel and glass. The oxygen permeability coefficient of CPPC exhibits a decrease of 33% compared with that of PPC. Moreover, CPPC is quite stable in air, whereas it could be well biodegraded in soil compared with PPC. These results indicated that CPPC could be widely used in the fields of coating, adhesive, barrier materials and so on, which could greatly promote the development of PPC industry.
基金Project supported by the KACST Strategic Technologies Research Grant(10-PET1103-06)
文摘In the attempt to reduce surface free energy of silica to improve interaction of silica with silver, silica was doped by different amounts of low surface energy lanthanum, La_2O_3, through impregnation. The doped and undoped silica were used as supports for preparation of Na/Ag/Mo/La_2O_3-SiO_2 catalysts. Catalytic performances of the catalysts were evaluated in direct epoxidation of propylene(DPO) using molecular oxygen under atmospheric pressure and without adding hydrogen. Adding 5 wt%La to the Na/Ag/Mo/SiO_2 catalyst improves both the catalysts electivity in DPO and its stability over 20h of time-on-stream.The characterization results show that La_2O_3 species interact strongly with silver particles on the silica surface which result in significant improvement in the dispersion profile of silver and marked decrease in the size of silver nanoparticles(AgNPs). The estimated mean diameter of AgNPs is ca. 4.0 nm in Na/Ag/Mo/5 wt%La_2O_3-SiO_2, which is smaller than that(53.9 nm) found in Na/Ag/SiO_2. The presence of subnanometer AgNPs on Ag/La_2O_3-SiO_2 prior addition of MoO_3 and NaCl to the sample can enhance the mutual electronic synergism between Ag, MoO_3 and Na for selective production of propylene oxide.
文摘通过自建实验台模拟瓦斯全循环油页岩干馏工艺并进行积碳实验,利用气相色谱仪对积碳反应前后瓦斯气组分性质进行分析。使用丙烯为碳源气,观察不同工况下(反应时间、壁面温度、气体流量)的积碳现象。结果表明:瓦斯气中主要积碳母体为烯烃,含量最高为丙烯。积碳量随反应时间和壁面温度(800℃以下)的增加而增加,随气体流量的增加而变化,流量达到30 m L·min^(-1)后积碳量开始减少。各工况对积碳现象的影响程度依次是反应时间>气体流量>壁面温度。
文摘Methane, CH4, here represents natural gas (NG) of which it is the main constituent. Routes of chemical utilisation of NG - as opposed to energy usage - are discussed. A main step is the conversion of NG to synthesis gas, a mixture of CO and H2. Simple molecules derived from synthesis gas, like methanol, can be further reacted to longer-chained hydrocarbons like propylene and other olefins and even to gasoline and diesel.
文摘通过自建实验台模拟瓦斯全循环油页岩干馏工艺并进行积炭实验,以丙烯为碳源气,考察反应时间、壁面温度和气体流量对积炭的影响。结果表明,积炭量随反应时间和壁面温度(800℃以下)的增加而增加,随气体流量的增加先增加,流量达到30 m L/min后积炭量开始减少。各因素对积炭的影响程度从大到小依次为反应时间、气体流量和壁面温度,且各因素间无交互作用。
基金supported by National Natural Science Foundation of China (Grant Nos.40603015,40873031)Petro China Scientific Research and Technological Development Projects (Grant No.2008A-0608)
文摘Sanhu depression of Qaidam Basin is the largest biogenic gas production region in China.Headspace samples were collected from two wells in this region,and hydrogen and propylene compounds were detected in these samples with a certain concentration.The stable hydrogen isotope ratio of H 2 is relatively light (-700‰--820‰).The stable carbon isotope ratio of propylene ranges from -27‰ to -40‰,which coincides with the rule of change of the stable carbon isotope of kerogen at the corresponding horizon.The characteristic analysis of sediments,structures,and Ar and He components in the region indicates that these microelement compounds are the product of degradation of organic substances by microorganisms,rather than from the mantle source,inorganic reaction or other sources.Detection of these components provides solid evidence for the strong ongoing methanogenesis in this region.