Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of thi...Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.展开更多
The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and ...The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.展开更多
Geogas prospecting is a new method in the search for deep and/or concealed mineral deposits.The probing depth of the method comes to 300-500 m below the surface. The method, based on nuclear aualysis and accumulation ...Geogas prospecting is a new method in the search for deep and/or concealed mineral deposits.The probing depth of the method comes to 300-500 m below the surface. The method, based on nuclear aualysis and accumulation sampling, has matured and become useful method of geogas prospecting, through authors' studies more than 10 years. The study of the mechanism for geogas prospecting has also been progressed. It bas been revealed that the geogas matter is in the form of nano-scale particles of the ores by the observation of scanning electron microscope (SEM). This paper summarizes the feature of the geogas anomaly, and describes its forming mechanism. A new example using geogas prospecting is given.展开更多
1.Objective A series of Mesozoic-Cenozoic continental sedimentary basins exist in North China,coexisting with coal,oil/gas,and salt resources.Many previous drilling projects have been conducted within these basins to ...1.Objective A series of Mesozoic-Cenozoic continental sedimentary basins exist in North China,coexisting with coal,oil/gas,and salt resources.Many previous drilling projects have been conducted within these basins to explore coal,petroleum,and mineral resources,however,these data have not been integrated due to different industries owners.In order to efficiently explore the large-sized,easily extracted,and environmentally friendly,sandstone-type uranium deposits,previous coal and oil exploration drilling-hole data are systematically collected, processed,and analyzed to improve the sandstone-type uranium prospecting exploitation.At the same time,we also discussed the uranium source,ore-forming process and model for the sandstone-type uranium deposits.展开更多
This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysi...This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysical features such as low resistivity,high polarization rate and uneven distribution of magnetization,the comprehensive geophysical methods are adopted including high-precision magnetic measurement,high-power induced polarization,IP field middle gradient and controlled source audio-frequency magnetotellurics.In the survey work of multi-metal ore deposits,from surface sweeping to single point measurement,and from single point to section going deeper layer by layer,the resolution of measurement is continuously improved,and various geophysical methods support and complement each other,so explorers can successfully predict the direction,scale and volume of the metallogenic belts in conjunction with geochemical exploration,geological survey and drilling.It has provided a strong basis for completing the exploration task of predicting the reserve volume of ore bodies.The research conclusions of this exploration case have thus a high reference value in the same type of exploration work.展开更多
Landsat 8 Oli,ASTER,and Sentinel 2A satellite images processing was used to map geological formations,lineaments and hydrothermal alteration minerals in the Aouli inlier,as a case study to illustrate the application o...Landsat 8 Oli,ASTER,and Sentinel 2A satellite images processing was used to map geological formations,lineaments and hydrothermal alteration minerals in the Aouli inlier,as a case study to illustrate the application of digital images processing and Geographic Information System(GIS)in geological mapping and mining prospecting.Principal Component Analysis(PCA)applied to the Landsat images allowed good lithological discrimination and contributed to the updating of available geological maps.The Automatic lineament extraction from Sentinel images revealed the main tectonic structures affecting Aouli inlier.The ratio bands(b5+b7)/b6 and the false color composite(b4/b6,b2/b1,b3/b2)allowed the hydrothermal alteration minerals mapping from Aster images.Combined with available geological data and field observations,the satellite derived data were integrated and analyzed in a GIS software to establish mining prospecting guides.The results showed that the anomaly zones are intimately linked to NNE-SSW and NW-SE oriented faults and to highly fractured areas developing argillic and Fe rich alterations.Verified via field survey,this approach was successfully applied to the Aouli inlier to rapidly target potential areas to be explored in the tactical phase.This provides a model for future prospecting efforts for similar mineral deposits in other areas.展开更多
The Fe-Pb-Zn-Cu polymetallic deposits in the Luziyuan area, are of a sedimentary-reformed type related with magmatic hydrothermalism. Previous researches have suggested that the mineralization is closely related to th...The Fe-Pb-Zn-Cu polymetallic deposits in the Luziyuan area, are of a sedimentary-reformed type related with magmatic hydrothermalism. Previous researches have suggested that the mineralization is closely related to the hidden granites, but little is known about these granites including their burial depth and scale, which has limited the establishment of prospecting models and the optimization of prospecting targets. Geophysical methods have a great exploration depth, and have played a unique role in the prediction of hidden granites. It is shown that granites have low density and high resistivity,展开更多
With the global rise of industries of the new-generation information technology, energy conservation and environmental protection, biotechnology, high-end manufacturing, new materials and clean-energy vehicles, tradit...With the global rise of industries of the new-generation information technology, energy conservation and environmental protection, biotechnology, high-end manufacturing, new materials and clean-energy vehicles, traditional metal materials cannot meet the functional requirements. Consequently, "three rare mineral resources", regarded as the best altemative for current and future new industries, have received much attention among industrial circles and have become a new focus during the present geological prospecting in China.展开更多
The large-scale Yangla copper deposit, located in the central part of the Sanjiang Tethys polymetallic belt, is structurally controlled by the Jinsha River Fault and Yangla Fault. This deposit consists of seven ore bl...The large-scale Yangla copper deposit, located in the central part of the Sanjiang Tethys polymetallic belt, is structurally controlled by the Jinsha River Fault and Yangla Fault. This deposit consists of seven ore blocks, including the Beiwu, Nilv, Jiangbian, Linong, Lunong, Tongjige and Jiaren. The Cu metal prospective reserves of the Yangla deposit are above 1 million tons. There are widely distributed Indosinian granodiorite and also many gabbro-diabase dikes and few quartz porphyries exposed in the Yangla ore district. The ore-hosting rocks are diopsode-garnet skarn, sericitie sandy slate and metamorphic quartz sandstone of the first member of the Devonian Linong Formation. Ore bodies occur as layered, stratoid, lenticular and veined shapes, and are strictly controlled by rocks, strata and structures.展开更多
Since 2015, the China Geological Survey has implemented a major program of "Geology Survey of Land Energy Mineral Resources". Till now, a total of billions of RMB have been invested and seven engineering projects ha...Since 2015, the China Geological Survey has implemented a major program of "Geology Survey of Land Energy Mineral Resources". Till now, a total of billions of RMB have been invested and seven engineering projects have been established, all of which has greatly enhanced the geological survey and exploration of China's continental shale gas in an attempt to overcome the oil and gas shortage.展开更多
The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in th...The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.展开更多
An increasing number of tunnels are being constructed with tunnel-boring machines (TBMs) due to the increased efficiency and shorter completion time resulting from their use. However, when a TBM encoun- ters adverse...An increasing number of tunnels are being constructed with tunnel-boring machines (TBMs) due to the increased efficiency and shorter completion time resulting from their use. However, when a TBM encoun- ters adverse geological conditions in the course of tunnel construction (e.g., karst caves, faults, or frac- tured zones), disasters such as water and mud inrush, collapse, or machine blockage may result, and may severely imperil construction safety. Therefore, the advance detection of adverse geology and water-bearing conditions in front of the tunnel face is of great importance. This paper uses the TBM tun- neling of the water conveyance project from Songhua River as a case study in order to propose a compre- hensive forward geological prospecting technical system that is suitable for TBM tunnel construction under complicated geological conditions. By combining geological analysis with forward geological prospecting using a three-dimensional (3D) induced polarization method and a 3D seismic method, a comprehensive forward geological prospecting technical system can accurately forecast water inrush geo-hazards or faults in front of the TBM tunnel face. In this way, disasters such as water and mud inrush, collapse, or machine blockage can be avoided. This prospecting technical system also has reference value for carrying out the forward prospecting of adverse geology for potential TBM tunneling and for ensuring that a TBM can work efficiently.展开更多
With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is f...With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.展开更多
Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
With the rapid development of China's economy, coal resources are increasingly in great demand. As a result, the remaining coal reserves diminish gradually with large-scale exploitation of coal resources. Easily-foun...With the rapid development of China's economy, coal resources are increasingly in great demand. As a result, the remaining coal reserves diminish gradually with large-scale exploitation of coal resources. Easily-found mines which used to be identified from outcrops or were buried under shallow overburden are decreasing, especially in the prosperous eastern regions of China, which experience coal shortages. Currently the main targets of coal prospecting are concealed and unidentified underground coal bodies, making it more and more difficult for coal prospecting. It is therefore important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, we demonstrate the methodologies and existing problems systematically by summarizing past practices of coal prospecting with remote sensing. We propose a new theory of coal prospecting with remote sensing. In uncovered areas, coal resources can be prospected for by direct interpretation. In coal beating strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence.展开更多
Global mineral products have been declining in 2019,which has led to a very sluggish global geological prospecting and mineral exploration.Statistics show that in 2019,the iron ore imports of China accounted for 64%of...Global mineral products have been declining in 2019,which has led to a very sluggish global geological prospecting and mineral exploration.Statistics show that in 2019,the iron ore imports of China accounted for 64%of the world’s total,copper ore accounted for 56%,and bauxite ore accounted for 76%.Driven by rigid demand,the metal and non-metallic geological prospecting and mineral exploration in China are uniquely outstanding with fruitful results.This journal summarizes the above results and reports to the society to increase the social impact of geological exploration.展开更多
On October 18,2018,the China Geological Survey launched a project of the National Key Research and Development Program of China,entitled "Prediction and Deep Exploration Demonstration of Gold Polymetallic Deposit...On October 18,2018,the China Geological Survey launched a project of the National Key Research and Development Program of China,entitled "Prediction and Deep Exploration Demonstration of Gold Polymetallic Deposits in the Jiaodong and Liaodong Areas within the North China Craton".For this project,Wulong and Baiyun- Xiaotongjiapuyi in Jiaodong,as well as the northern Zhaoping belts of Liaodong,were chosen as ore prospecting demonstration areas (Fig.1).展开更多
The Nyasirori gold deposit,located in the middle-western end of the Musoma-Mara Archean greenstone belt in Tanzania,is a tectonic altered rock type gold deposit controlled by shear tectonic zone.This work conducted hi...The Nyasirori gold deposit,located in the middle-western end of the Musoma-Mara Archean greenstone belt in Tanzania,is a tectonic altered rock type gold deposit controlled by shear tectonic zone.This work conducted high-precision ground magnetic measurements to delineate fault structures and favorable prospecting targets,utilized induced polarization(IP)intermediate gradient to roughly determine the distribution and extension of the tectonic altered zone and gold ore(mineralized)bodies,and further carried out IP sounding and magnetotelluric sounding to locate the tectonic altered zone and gold ore(mineralized)bodies.The anomalous gradient belt of the combination of positive and negative micromagnetic measurements reflects the detail of shallow surface tectonic alteration zone and gold mineralization body.Micromagnetic profile anomalies indicate the spatial location and occurrence of concealed tectonic alteration zone and gold(mineralized)ore bodies.Soil geochemical measurements indicate that the ore-forming element Au correlates well with As and Sb,and As and Sb anomalies have a good indication to gold orebodies.Based on the multi-source geological-geophysical-geochemical information of the Nyasirori gold deposit,this work established an integrated prospecting model and proposed a set of geophysical and geochemical methods for optimizing prospecting targets.展开更多
Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical cha...Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical characteristics of metallogenesis, the source of ore-forming materials, changes in the physical and chemical conditions of metallogenesis, changes in the vertical width of ore veins, and changes in gold grade of the Shihu gold deposit, the mechanism of its metallogenesis was discussed and the rules of vertical variation of ore veins were summarized in this study. It is pointed out that the orebodies under exploitation at present time should be in the middle and upper portions of gold veins in the Shihu gold mining district. Particularly on the basis of the characteristics of mantle-branch structure-associated metallogenesis, it is indicated that metallogenesis is controlled mainly by such ore-forming conditions as temperature and pressure. Deep-seated ore-forming fluids are characterized mainly by injection and precipitation. So the vein bodies in the adjacent metallogenic structures are of obvious comparability, and there would be great prospects for ore search both at depth and in the periphery of the Shihu gold deposit. Therefore, ore prospecting should be strengthened both at depth and in the peripheries.展开更多
基金the Geological Science and technology foundation of Shandong Provincial Bureau of Geology and Mineral Resources (Grant No. 20080037)
文摘Integrated gravitational, electrical-magnetic surveys and data processing carried out in the Sanshandao-Jiaojia area, Eastern Shandong Province, northeast China, aim to illuminate the geological characteristics of this shallow-covered area and delineate deep-seated gold prospecting targets. In this region, altogether 12 faults exert critical control on distribution of three types of Early Precambrian metamorphic rock series, i.e. those in the metamorphic rock area, in the granitic rock area underlying the metamorphic rock, and in the remnant metamorphic rock area in granites, respectively. Additionally, the faults have major effects on distribution of four Mesozoic Linglong rock bodies of granite, i.e. the Cangshang, Liangguo, Zhuqiao-Miaojia and Jincheng granites. The Sanshandao and Jiaojia Faults are two well-known regional ore-controlling faults; they have opposite dip direction, and intersect at a depth of 4500 m. Fracture alteration zones have striking geophysical differences relative to the surrounding county rocks. The two faults extend down along dip direction in a gentle wave form, and appear at some steps with different dips. These steps comprise favorable gold prospecting areas, consistent with a step metallogenic model. Six deep-seated gold-prospecting targets are delineated, i.e. Jincheng-Qianchenjia, Xiaoxizhuang-Zhaoxian, Xiyou-Wujiazhuangzi, Xiangyangling-Xinlicun, Panjiawuzi and Miaojia-Pinglidian.
基金supported by the National Science and Technology Support Project of China (No.2006BAB01B08)
文摘The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the thirdlargest magmatic sulfide Ni-Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Nirich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi-MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu-Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.
文摘Geogas prospecting is a new method in the search for deep and/or concealed mineral deposits.The probing depth of the method comes to 300-500 m below the surface. The method, based on nuclear aualysis and accumulation sampling, has matured and become useful method of geogas prospecting, through authors' studies more than 10 years. The study of the mechanism for geogas prospecting has also been progressed. It bas been revealed that the geogas matter is in the form of nano-scale particles of the ores by the observation of scanning electron microscope (SEM). This paper summarizes the feature of the geogas anomaly, and describes its forming mechanism. A new example using geogas prospecting is given.
文摘1.Objective A series of Mesozoic-Cenozoic continental sedimentary basins exist in North China,coexisting with coal,oil/gas,and salt resources.Many previous drilling projects have been conducted within these basins to explore coal,petroleum,and mineral resources,however,these data have not been integrated due to different industries owners.In order to efficiently explore the large-sized,easily extracted,and environmentally friendly,sandstone-type uranium deposits,previous coal and oil exploration drilling-hole data are systematically collected, processed,and analyzed to improve the sandstone-type uranium prospecting exploitation.At the same time,we also discussed the uranium source,ore-forming process and model for the sandstone-type uranium deposits.
基金supported by Investigation and Evaluation of Groundwater Resources and Environmental Problems in Hetao Plain (Geological Survey Program, Grant No.1212010913010)
文摘This paper is based on the analysis and research on the silver-lead-zinc polymetallic ore in New Ballyhoo Banner in southern Manzhouli of Inner Mongolia.Because metal mineralization brings rock formations,the geophysical features such as low resistivity,high polarization rate and uneven distribution of magnetization,the comprehensive geophysical methods are adopted including high-precision magnetic measurement,high-power induced polarization,IP field middle gradient and controlled source audio-frequency magnetotellurics.In the survey work of multi-metal ore deposits,from surface sweeping to single point measurement,and from single point to section going deeper layer by layer,the resolution of measurement is continuously improved,and various geophysical methods support and complement each other,so explorers can successfully predict the direction,scale and volume of the metallogenic belts in conjunction with geochemical exploration,geological survey and drilling.It has provided a strong basis for completing the exploration task of predicting the reserve volume of ore bodies.The research conclusions of this exploration case have thus a high reference value in the same type of exploration work.
文摘Landsat 8 Oli,ASTER,and Sentinel 2A satellite images processing was used to map geological formations,lineaments and hydrothermal alteration minerals in the Aouli inlier,as a case study to illustrate the application of digital images processing and Geographic Information System(GIS)in geological mapping and mining prospecting.Principal Component Analysis(PCA)applied to the Landsat images allowed good lithological discrimination and contributed to the updating of available geological maps.The Automatic lineament extraction from Sentinel images revealed the main tectonic structures affecting Aouli inlier.The ratio bands(b5+b7)/b6 and the false color composite(b4/b6,b2/b1,b3/b2)allowed the hydrothermal alteration minerals mapping from Aster images.Combined with available geological data and field observations,the satellite derived data were integrated and analyzed in a GIS software to establish mining prospecting guides.The results showed that the anomaly zones are intimately linked to NNE-SSW and NW-SE oriented faults and to highly fractured areas developing argillic and Fe rich alterations.Verified via field survey,this approach was successfully applied to the Aouli inlier to rapidly target potential areas to be explored in the tactical phase.This provides a model for future prospecting efforts for similar mineral deposits in other areas.
文摘The Fe-Pb-Zn-Cu polymetallic deposits in the Luziyuan area, are of a sedimentary-reformed type related with magmatic hydrothermalism. Previous researches have suggested that the mineralization is closely related to the hidden granites, but little is known about these granites including their burial depth and scale, which has limited the establishment of prospecting models and the optimization of prospecting targets. Geophysical methods have a great exploration depth, and have played a unique role in the prediction of hidden granites. It is shown that granites have low density and high resistivity,
文摘With the global rise of industries of the new-generation information technology, energy conservation and environmental protection, biotechnology, high-end manufacturing, new materials and clean-energy vehicles, traditional metal materials cannot meet the functional requirements. Consequently, "three rare mineral resources", regarded as the best altemative for current and future new industries, have received much attention among industrial circles and have become a new focus during the present geological prospecting in China.
文摘The large-scale Yangla copper deposit, located in the central part of the Sanjiang Tethys polymetallic belt, is structurally controlled by the Jinsha River Fault and Yangla Fault. This deposit consists of seven ore blocks, including the Beiwu, Nilv, Jiangbian, Linong, Lunong, Tongjige and Jiaren. The Cu metal prospective reserves of the Yangla deposit are above 1 million tons. There are widely distributed Indosinian granodiorite and also many gabbro-diabase dikes and few quartz porphyries exposed in the Yangla ore district. The ore-hosting rocks are diopsode-garnet skarn, sericitie sandy slate and metamorphic quartz sandstone of the first member of the Devonian Linong Formation. Ore bodies occur as layered, stratoid, lenticular and veined shapes, and are strictly controlled by rocks, strata and structures.
文摘Since 2015, the China Geological Survey has implemented a major program of "Geology Survey of Land Energy Mineral Resources". Till now, a total of billions of RMB have been invested and seven engineering projects have been established, all of which has greatly enhanced the geological survey and exploration of China's continental shale gas in an attempt to overcome the oil and gas shortage.
基金funded by the project titled Prospect Survey and Exploration Demonstration of Hardrock Mineral Resources such as Uranium and Thorium(12120115014101)initiated by the Tianjin Center of China Geological Survey.The data and achievements cited in this paper are mainly from relevant scientific research,geological survey,and mineral exploration projects undertaken by the No.302 Brigade of Hunan Nuclear Industry Geology Bureau in recent years.
文摘The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.
文摘An increasing number of tunnels are being constructed with tunnel-boring machines (TBMs) due to the increased efficiency and shorter completion time resulting from their use. However, when a TBM encoun- ters adverse geological conditions in the course of tunnel construction (e.g., karst caves, faults, or frac- tured zones), disasters such as water and mud inrush, collapse, or machine blockage may result, and may severely imperil construction safety. Therefore, the advance detection of adverse geology and water-bearing conditions in front of the tunnel face is of great importance. This paper uses the TBM tun- neling of the water conveyance project from Songhua River as a case study in order to propose a compre- hensive forward geological prospecting technical system that is suitable for TBM tunnel construction under complicated geological conditions. By combining geological analysis with forward geological prospecting using a three-dimensional (3D) induced polarization method and a 3D seismic method, a comprehensive forward geological prospecting technical system can accurately forecast water inrush geo-hazards or faults in front of the TBM tunnel face. In this way, disasters such as water and mud inrush, collapse, or machine blockage can be avoided. This prospecting technical system also has reference value for carrying out the forward prospecting of adverse geology for potential TBM tunneling and for ensuring that a TBM can work efficiently.
基金supported by the National Science Foundation of China(No.41374129)Science and Technology Project of Shanxi Province(No.20100321066)Research and Development Project of National Major Scientifi c Research Equipment(No.ZDYZ2012-1-05-04)
文摘With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goal is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goals are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to orosoect a multilaver water-filled goaf is feasible.
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
基金Projects 1212010733809 and 1212010534601 supported by the National Geological Prospecting Foundation of China
文摘With the rapid development of China's economy, coal resources are increasingly in great demand. As a result, the remaining coal reserves diminish gradually with large-scale exploitation of coal resources. Easily-found mines which used to be identified from outcrops or were buried under shallow overburden are decreasing, especially in the prosperous eastern regions of China, which experience coal shortages. Currently the main targets of coal prospecting are concealed and unidentified underground coal bodies, making it more and more difficult for coal prospecting. It is therefore important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, we demonstrate the methodologies and existing problems systematically by summarizing past practices of coal prospecting with remote sensing. We propose a new theory of coal prospecting with remote sensing. In uncovered areas, coal resources can be prospected for by direct interpretation. In coal beating strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence.
文摘Global mineral products have been declining in 2019,which has led to a very sluggish global geological prospecting and mineral exploration.Statistics show that in 2019,the iron ore imports of China accounted for 64%of the world’s total,copper ore accounted for 56%,and bauxite ore accounted for 76%.Driven by rigid demand,the metal and non-metallic geological prospecting and mineral exploration in China are uniquely outstanding with fruitful results.This journal summarizes the above results and reports to the society to increase the social impact of geological exploration.
文摘On October 18,2018,the China Geological Survey launched a project of the National Key Research and Development Program of China,entitled "Prediction and Deep Exploration Demonstration of Gold Polymetallic Deposits in the Jiaodong and Liaodong Areas within the North China Craton".For this project,Wulong and Baiyun- Xiaotongjiapuyi in Jiaodong,as well as the northern Zhaoping belts of Liaodong,were chosen as ore prospecting demonstration areas (Fig.1).
基金This work is financially supported by the Special Fund for Foreign Mineral Resources Risk Exploration(201210B01600234).
文摘The Nyasirori gold deposit,located in the middle-western end of the Musoma-Mara Archean greenstone belt in Tanzania,is a tectonic altered rock type gold deposit controlled by shear tectonic zone.This work conducted high-precision ground magnetic measurements to delineate fault structures and favorable prospecting targets,utilized induced polarization(IP)intermediate gradient to roughly determine the distribution and extension of the tectonic altered zone and gold ore(mineralized)bodies,and further carried out IP sounding and magnetotelluric sounding to locate the tectonic altered zone and gold ore(mineralized)bodies.The anomalous gradient belt of the combination of positive and negative micromagnetic measurements reflects the detail of shallow surface tectonic alteration zone and gold mineralization body.Micromagnetic profile anomalies indicate the spatial location and occurrence of concealed tectonic alteration zone and gold(mineralized)ore bodies.Soil geochemical measurements indicate that the ore-forming element Au correlates well with As and Sb,and As and Sb anomalies have a good indication to gold orebodies.Based on the multi-source geological-geophysical-geochemical information of the Nyasirori gold deposit,this work established an integrated prospecting model and proposed a set of geophysical and geochemical methods for optimizing prospecting targets.
基金This research project is financially granted jointly by the National Natural Science Foundation of China (Grant No 40872137)the Natural Science Foundation of Hebei Province (Grant Nos D2007000751, D2008000534)
文摘Under the guidance of the theory of mantle-branch structure-associated metallogenesis and on the basis of the geological characteristics, analysis of the ore-forming and ore-controlling structures, the geochemical characteristics of metallogenesis, the source of ore-forming materials, changes in the physical and chemical conditions of metallogenesis, changes in the vertical width of ore veins, and changes in gold grade of the Shihu gold deposit, the mechanism of its metallogenesis was discussed and the rules of vertical variation of ore veins were summarized in this study. It is pointed out that the orebodies under exploitation at present time should be in the middle and upper portions of gold veins in the Shihu gold mining district. Particularly on the basis of the characteristics of mantle-branch structure-associated metallogenesis, it is indicated that metallogenesis is controlled mainly by such ore-forming conditions as temperature and pressure. Deep-seated ore-forming fluids are characterized mainly by injection and precipitation. So the vein bodies in the adjacent metallogenic structures are of obvious comparability, and there would be great prospects for ore search both at depth and in the periphery of the Shihu gold deposit. Therefore, ore prospecting should be strengthened both at depth and in the peripheries.