[Objective] This study aimed to explore the effects of used battery lixivium on wheat germination. [Method] The wheat seeds were treated with used battery lix- ivium at different concentrations to detect the change of...[Objective] This study aimed to explore the effects of used battery lixivium on wheat germination. [Method] The wheat seeds were treated with used battery lix- ivium at different concentrations to detect the change of activities of amylase, pro- tease, pyruvate dehydrogenase (PDH) and polyphenol oxidase (PPO) during the ger- mination period. [Result] The results showed that the used battery affected enzyme activity. With the increase of concentration of used battery lixivium, trends of the changes of amylase and protease activities were not different. The activities were en- hanced at low concentrations of lixivium, while were inhibited at high concentrations. The tends of changes of pyruvate dehydrogenase (PDH) and polyphenol oxidase (PPO) activities were not consistent with that of either amylase or protease, which showed continuous downward trends with the increasing concentration of used battery lixivium. [Conclusion] This study is of great practical significance for understanding the effects of used battery lixivium on the germination of wheat seeds.展开更多
文摘[Objective] This study aimed to explore the effects of used battery lixivium on wheat germination. [Method] The wheat seeds were treated with used battery lix- ivium at different concentrations to detect the change of activities of amylase, pro- tease, pyruvate dehydrogenase (PDH) and polyphenol oxidase (PPO) during the ger- mination period. [Result] The results showed that the used battery affected enzyme activity. With the increase of concentration of used battery lixivium, trends of the changes of amylase and protease activities were not different. The activities were en- hanced at low concentrations of lixivium, while were inhibited at high concentrations. The tends of changes of pyruvate dehydrogenase (PDH) and polyphenol oxidase (PPO) activities were not consistent with that of either amylase or protease, which showed continuous downward trends with the increasing concentration of used battery lixivium. [Conclusion] This study is of great practical significance for understanding the effects of used battery lixivium on the germination of wheat seeds.