期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability 被引量:6
1
作者 Xiangxiong Kong Xi Luo +2 位作者 Gao-Ping Qu Peng Liu Jing Bo Jin 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2017年第1期15-29,共15页
The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathway... The initiation of flowering is tightly regulated by the endogenous and environment signals, which is crucial for the reproductive success of flowering plants. It is well known that autonomous and vernalization pathways repress transcription of FLOWERING LOCUS C(FLC), a focal floral repressor, but how its protein stability is regulated remains largely unknown. Here, we found that mutations in a novel Arabidopsis SUMO protease 1(ASP1) resulted in a strong late-flowering phenotype under long-days, but to a lesser extent under short-days. ASP1 localizes in the nucleus and exhibited a SUMO protease activity in vitro and in vivo. The conserved Cys-577 in ASP1 is critical for its enzymatic activity, as well as its physiological function in the regulation of flowering time. Genetic and gene expression analyses demonstrated that ASP1 promotes transcription of positive regulators of flowering, such as FT,SOC1 and FD, and may function in both CO-dependent photoperiod pathway and FLC-dependent pathways.Although the transcription level of FLC was not affected in the loss-of-function asp1 mutant, the protein stability of FLC was increased in the asp1 mutant. Taken together, this study identified a novel bona fide SUMO protease, ASP1,which positively regulates transition to flowering at least partly by repressing FLC protein stability. 展开更多
关键词 flowering Arabidopsis protease phenotype mutant floral physiological regulating endogenous genomic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部