期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Pressure relief, gas drainage and deformation effects on an overlying coal seam induced by drilling an extra-thin protective coal seam 被引量:11
1
作者 LIU Hai-bo CHENG Yuan-ping +2 位作者 SONG Jian-cheng SHANG Zheng-jie WANG Liang 《Mining Science and Technology》 EI CAS 2009年第6期724-729,共6页
Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ... Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%. 展开更多
关键词 extra-thin protective coal seam DRILLING pressure relief expansion deformation gas drainage
下载PDF
Three-dimensional numerical simulation of methane drainage by high-level drill holes in a lower protective coal seam with a “U” type face 被引量:7
2
作者 Xingkui Liu Shuzhao Yang 《International Journal of Coal Science & Technology》 EI CAS 2014年第4期434-440,共7页
Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT com... Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT computational fluid mechanics software is used to solve the mass,momentum and species conservation equations of the model.The spatial distributions of oxygen and methane was obtained by calculations and the drainage results of different drill-hole positions were compared.The results show that,from top to bottom,methane dilution by oxygen weakens gradually from the intake to the return side,and methane tends to float;methane and oxygen distribute horizontally.The high-level crossing holes contribute to better methane drainage and a greater level of control.Around these holes,the methane density decreases dramatically and a "half circle"distribution is formed.The methane density decreases on the whole,but a proportion of the methane moves back to deep into the goaf.The research findings provide theoretical grounds for methane drainage. 展开更多
关键词 Low protective coal seam 3D stope model High-level drill Drainage effects
下载PDF
Effect of protective coal seam mining and gas extraction on gas transport in a coal seam 被引量:12
3
作者 Yao Banghua Ma Qingqing +2 位作者 Wei Jianping Ma Jianhong Cai Donglin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期637-643,共7页
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The researc... A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China. 展开更多
关键词 Protective coal seam mining Seepage characteristic coal and gas outburst Numerical simulation
下载PDF
Green coal mining technique integrating mining-dressing-gas draining-backfilling-mining 被引量:15
4
作者 Zhang Jixiong Zhang Qiang +3 位作者 Spearing A.J.S.(Sam) Miao Xiexing Guo Shuai Sun Qiang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第1期17-27,共11页
Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam... Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits. 展开更多
关键词 Integrated green mining technique Protective and protected coal seams Mixed workface Solid backfill with gangueGas drainage
下载PDF
A Numerical Investigation of the Stress Relief Zones Around a Longwall Face in the Lower Seam for Gas Drainage Considerations
5
作者 Chunlei Zhang YPChugh +4 位作者 Ruimin Feng Yong Zhang Wei Shen Jingke Wu Yushun Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期135-157,共23页
Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding roc... Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts. 展开更多
关键词 Methane drainage longwall mining protective/protected coal seam multiple seams FLAC3D software stress relief zones
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部