Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological cond...Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.展开更多
In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in...In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,whic...Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,which is intrinsically triggered by the overcharging and overheating.To improve the safety of LIBs,various protection strategies based on self-actuating reaction control mechanisms(SRCMs)have been proposed,including redox shuttle,polymerizable monomer additive,potential-sensitive separator,thermal shutdown separator,positive-temperature-coefficient electrode,thermally polymerizable addi-tive,and reversible thermal phase transition electrolyte.As build-in protection mechanisms,these meth-ods can sensitively detect either the temperature change inside battery or the potential change of the electrode,and spontaneously shut down the electrode reaction at risky conditions,thus preventing the battery from going into thermal runaway.Given their advantages in enhancing the intrinsic safety of LIBs,this paper overviews the research progresses of SRCMs after a brief introduction of thermal runaway mechanism and limitations of conventional thermal runaway mitigating measures.More importantly,the current states and issues,key challenges,and future developing trends of SRCTs are also discussed and outlined from the viewpoint of practical application,aiming at providing insights and guidance for developing more effective SRCMs for LIBs.展开更多
The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses ...The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway.展开更多
A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the deve...A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.展开更多
The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surfa...The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surface treatments to protect against corrosion or wear.This study presents a novel approach for the simultaneous delivery of two distinct corrosion inhibitors to Ti-Mg dissimilar PEO treated joints on demand.The research focuses on the synthesis,characterization,and application of cerium@polystyrene(Ce@PS)nanocontainers,which are loaded with 8-hydroxyquinoline(8-HQ)to enhance corrosion protection.The synthesis involves several key steps,including the formation of a cerium-based outer layer around polystyrene nanospheres,the selective removal of the polystyrene core to create a porous structure,and the subsequent loading of the 8-HQ inhibitor.Structural and compositional analyses,conducted using scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDS),confirmed the successful incorporation of 8-HQ within the nanocontainers.Additionally,Fourier-transform infrared spectroscopy(FTIR)provided detailed information about the chemical composition of the organic materials throughout the synthesis process.Thermal decomposition analysis verified the successful fabrication and stability of the dual-shell nanocontainers.Corrosion tests on Ti-Mg joints treated with plasma electrolytic oxidation(PEO)coatings and loaded nanocontainers demonstrated sig-nificantly improved corrosion resistance compared to untreated joints.This research highlights the potential of dual-shell nanocontainers,containing both organic and inorganic inhibitors,to offer prolonged corrosion protection,particularly against galvanic corrosion in dissimilar joints.The findings suggest that these synthesized nanocontainers hold promise for various industrial applications,particularly in the context of friction stir welded(FSW)Ti-Mg dissimilar joints,providing valuable insights for the development of advanced materials designed to mitigate corrosion.展开更多
The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more ...The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.展开更多
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic...The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.展开更多
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders...With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.展开更多
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t...In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rej...With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.展开更多
Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This...Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This study presents a comprehensive overview of current bird repellant approaches used in agricultural contexts,as well as potential new ways. The bird repellent techniques include Internet of Things technology,Deep Learning,Convolutional Neural Network,Unmanned Aerial Vehicles,Wireless Sensor Networks and Laser biotechnology. This study’s goal is to find and review about previous approach towards repellent of birds in the crop fields using various technologies.展开更多
Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts...Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.展开更多
[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[...[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.展开更多
Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with n...Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with natural hazards,caused by earthquakes,floods and volcanic eruptions,and troubles unlikely come solely from the action of nature.Disasters threatening the human race can be caused also by people themselves.Both types of disasters cause vast human suffering,at the same time destroying cultural heritage as well,that has the function of determining the identity of social communities.These sufferings should be added to those that can be determined only by in-depth analyses which are derived from the synergy of natural forces and mistaken choices made by the humans,when it comes to their habitat.The proposed strategic plan for protection of built heritage in emergency situations may become the powerful catalyst for the process of revitalization by which the social tissue of community is maintained and restored,creating the symbol of resistance by which it endures each and every natural element and evil men behaviour.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strateg...The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strategies, which are hampered by the weight and size of inspection equipment, as well as the taxonomic extensiveness of interrupted species. Moreover, some insect pests that impede farmer productivity and profitability are difficult for researchers to address on time due to a lack of appropriate plant protection measures. Farmers’ reliance on synthetic pesticides and biocontrol agents has resulted in major economic and environmental ramifications. DNA barcoding is a novel technology that has the potential to improve Integrated Pest Management decision-making, which is dependent on the ability to correctly identify pest and beneficial organisms. This is due to some natural traits such as phenology or pesticide susceptibility browbeaten by IPM strategies to avert pest establishment. Specifically, Deoxyribonucleic acid (DNA) sequence information was applied effectively for the identification of some micro-organisms. This technology, DNA barcoding, allows for the identification of insect species by using short, standardized gene sequences. DNA barcoding is basically based on repeatable and accessible technique that allows for the mechanisation or automation of species discrimination. This technique bridges the taxonomic bio-security gap and meets the International Plant Protection Convention diagnostic standards for insect identification. This review therefore discusses DNA barcoding as a technique for insect pests’ identification and its potential application for crop protection.展开更多
基金supported by Fonds Clinatec and COVEA France(to JM).
文摘Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.
基金supported by the National Natural Science Foundation of China(61601147)the Beijing Natural Science Foundation(L182032)。
文摘In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金financially supported by the National Natural Science Foundation of China(U22A20438)the National Key R&D Program of China(2022YFB2502100)the National Natural Science Foundation of China(22309138).
文摘Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,which is intrinsically triggered by the overcharging and overheating.To improve the safety of LIBs,various protection strategies based on self-actuating reaction control mechanisms(SRCMs)have been proposed,including redox shuttle,polymerizable monomer additive,potential-sensitive separator,thermal shutdown separator,positive-temperature-coefficient electrode,thermally polymerizable addi-tive,and reversible thermal phase transition electrolyte.As build-in protection mechanisms,these meth-ods can sensitively detect either the temperature change inside battery or the potential change of the electrode,and spontaneously shut down the electrode reaction at risky conditions,thus preventing the battery from going into thermal runaway.Given their advantages in enhancing the intrinsic safety of LIBs,this paper overviews the research progresses of SRCMs after a brief introduction of thermal runaway mechanism and limitations of conventional thermal runaway mitigating measures.More importantly,the current states and issues,key challenges,and future developing trends of SRCTs are also discussed and outlined from the viewpoint of practical application,aiming at providing insights and guidance for developing more effective SRCMs for LIBs.
基金supported by the Key Research and Development Program of Ningxia Hui Autonomous Region,China(2022BEG02003)the Excellent Member of Youth Innovation Promotion Association,Chinese Academy of Sciences(Y202085)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2023448).
文摘The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway.
基金financially supported by the Science and Technology Commission Foundation of Shanghai(Grant Nos.22DZ1208903,20DZ2251900)the National Natural Science Foundation of China(Grant No.51679134)。
文摘A new scour countermeasure using solidified slurry for offshore foundation has been proposed recently.Fluidized solidified slurry is pumped to seabed area around foundation for scour protection or pumped into the developed scour holes for scour repair as the fluidized material solidifies gradually.In the pumping operation and solidification,the engineering behaviors of solidified slurry require to be considered synthetically for the reliable application in scour repair and protection of ocean engineering such as the pumpability related flow value,flow diffusion behavior related rheological property,anti-scour performance related retention rate in solidification and bearing capacity related strength property after solidification.In this study,a series of laboratory tests are conducted to investigate the effects of mix proportion(initial water content and binder content)on the flow value,rheological properties,density,retention rate of solidified slurry and unconfined compressive strength(UCS).The results reveal that the flow value increases with the water content and decreases with the binder amount.All the solidified slurry exhibits Bingham plastic behavior when the shear rate is larger than 5 s^(-1).The Bingham model has been employed to fit the rheology test results,and empirical formulas for obtaining the density,yield stress and viscosity are established,providing scientific support for the numerical assessment of flow and diffusion of solidified slurry.Retention rate of solidified slurry decreases with the water flow velocity and flow value,which means the pumpability of solidified slurry is contrary to anti-scour performance.The unconfined compressive strength after solidification reduces as the water content increases and binder content decreases.A design and application procedure of solidified soil for scour repair and protection is also proposed for engineering reference.
文摘The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surface treatments to protect against corrosion or wear.This study presents a novel approach for the simultaneous delivery of two distinct corrosion inhibitors to Ti-Mg dissimilar PEO treated joints on demand.The research focuses on the synthesis,characterization,and application of cerium@polystyrene(Ce@PS)nanocontainers,which are loaded with 8-hydroxyquinoline(8-HQ)to enhance corrosion protection.The synthesis involves several key steps,including the formation of a cerium-based outer layer around polystyrene nanospheres,the selective removal of the polystyrene core to create a porous structure,and the subsequent loading of the 8-HQ inhibitor.Structural and compositional analyses,conducted using scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDS),confirmed the successful incorporation of 8-HQ within the nanocontainers.Additionally,Fourier-transform infrared spectroscopy(FTIR)provided detailed information about the chemical composition of the organic materials throughout the synthesis process.Thermal decomposition analysis verified the successful fabrication and stability of the dual-shell nanocontainers.Corrosion tests on Ti-Mg joints treated with plasma electrolytic oxidation(PEO)coatings and loaded nanocontainers demonstrated sig-nificantly improved corrosion resistance compared to untreated joints.This research highlights the potential of dual-shell nanocontainers,containing both organic and inorganic inhibitors,to offer prolonged corrosion protection,particularly against galvanic corrosion in dissimilar joints.The findings suggest that these synthesized nanocontainers hold promise for various industrial applications,particularly in the context of friction stir welded(FSW)Ti-Mg dissimilar joints,providing valuable insights for the development of advanced materials designed to mitigate corrosion.
基金supported by National Natural Science Foundation of China under Grant No.61972360Shandong Provincial Natural Science Foundation of China under Grant Nos.ZR2020MF148,ZR2020QF108.
文摘The maturity of 5G technology has enabled crowd-sensing services to collect multimedia data over wireless network,so it has promoted the applications of crowd-sensing services in different fields,but also brings more privacy security challenges,the most commom which is privacy leakage.As a privacy protection technology combining data integrity check and identity anonymity,ring signature is widely used in the field of privacy protection.However,introducing signature technology leads to additional signature verification overhead.In the scenario of crowd-sensing,the existing signature schemes have low efficiency in multi-signature verification.Therefore,it is necessary to design an efficient multi-signature verification scheme while ensuring security.In this paper,a batch-verifiable signature scheme is proposed based on the crowd-sensing background,which supports the sensing platform to verify the uploaded multiple signature data efficiently,so as to overcoming the defects of the traditional signature scheme in multi-signature verification.In our proposal,a method for linking homologous data was presented,which was valuable for incentive mechanism and data analysis.Simulation results showed that the proposed scheme has good performance in terms of security and efficiency in crowd-sensing applications with a large number of users and data.
基金supported by the National Natural Science Foundation of China (41602205, 42293261)the China Geological Survey Program (DD20189506, DD20211301)+2 种基金the Special Investigation Project on Science and Technology Basic Resources of the Ministry of Science and Technology (2021FY101003)the Central Guidance for Local Scientific and Technological Development Fund of 2023the Project of Hebei University of Environmental Engineering (GCY202301)
文摘The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management.
基金supported in part by the National Natural Science Foundation of China under Grant U1905211,Grant 61872088,Grant 62072109,Grant 61872090,and Grant U1804263in part by the Guangxi Key Laboratory of Trusted Software under Grant KX202042+3 种基金in part by the Science and Technology Major Support Program of Guizhou Province under Grant 20183001in part by the Science and Technology Program of Guizhou Province under Grant 20191098in part by the Project of High-level Innovative Talents of Guizhou Province under Grant 20206008in part by the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province under Grant ZCL21015.
文摘With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.
基金supported by the Guangxi Science and Technology Plan and Project(Grant Numbers 2021AC19131 and 2022AC21140)Guangxi University of Science and Technology Doctoral Fund Project(Grant Number 20Z40).
文摘In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
基金the 2021 Key Project of Natural Science and Technology of Yangzhou Polytechnic Institute,Active Disturbance Rejection and Fault-Tolerant Control of Multi-Rotor Plant ProtectionUAV Based on QBall-X4(Grant Number 2021xjzk002).
文摘With the increasing prevalence of high-order systems in engineering applications, these systems often exhibitsignificant disturbances and can be challenging to model accurately. As a result, the active disturbance rejectioncontroller (ADRC) has been widely applied in various fields. However, in controlling plant protection unmannedaerial vehicles (UAVs), which are typically large and subject to significant disturbances, load disturbances andthe possibility of multiple actuator faults during pesticide spraying pose significant challenges. To address theseissues, this paper proposes a novel fault-tolerant control method that combines a radial basis function neuralnetwork (RBFNN) with a second-order ADRC and leverages a fractional gradient descent (FGD) algorithm.We integrate the plant protection UAV model’s uncertain parameters, load disturbance parameters, and actuatorfault parameters and utilize the RBFNN for system parameter identification. The resulting ADRC exhibits loaddisturbance suppression and fault tolerance capabilities, and our proposed active fault-tolerant control law hasLyapunov stability implications. Experimental results obtained using a multi-rotor fault-tolerant test platformdemonstrate that the proposed method outperforms other control strategies regarding load disturbance suppressionand fault-tolerant performance.
文摘Birds are a huge hazard to agriculture all around the world,causing harm to profitable field crops.Growers use a variety of techniques to keep them away,including visual,auditory,tactile,and olfactory deterrents. This study presents a comprehensive overview of current bird repellant approaches used in agricultural contexts,as well as potential new ways. The bird repellent techniques include Internet of Things technology,Deep Learning,Convolutional Neural Network,Unmanned Aerial Vehicles,Wireless Sensor Networks and Laser biotechnology. This study’s goal is to find and review about previous approach towards repellent of birds in the crop fields using various technologies.
文摘Chromia-forming alloys have good resistance to oxidizing agents such as O2, CO2, … It is accepted that the protection of these alloys is always due to the chromia layer formed at the surface of the alloys, which acts as a barrier between the oxidizing gases and the alloy substrates, forming a diffusion zone that limits the overall reaction rate and leads to parabolic kinetics. But this was not verified in the study devoted to Inconel®625 the oxidation in CO2 that was followed by TGA, with characterizations by XRD, EDS and FIB microscopy. Contrary to what was expected and accepted in similar studies on other chromia-forming alloys, it was shown that the diffusion step that governs the overall reaction rate is not located inside the chromia layer but inside the alloy, precisely inside a zone just beneath the interface alloy/chromia, this zone being depleted in chromium. The chromia layer, therefore, plays no kinetic role and does not directly protect the underlying alloy. This result was demonstrated using a simple test that consisted in removing the chromia layer from the surface of samples partially oxidized and then to continue the thermal treatment: insofar as the kinetics continued without any change in rate, this proved that this surface layer of oxide did not protect the substrate. Based on previous work on many chromia-forming alloys, the possibility of a similar reaction mechanism is discussed. If the chromia layer is not the source of protection for a number of chromia-forming alloys, as is suspected, this might have major consequences in terms of industrial applications.
基金Supported by 2024 General Project of Guangdong Provincial Philosophy and Social Science Planning(GD24CGL18).
文摘[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.
文摘Natural disasters and the adverse human activities are the key events in the history of mankind that form our history and shape our collective memory to this day.People on the planet Earth are not obsessed only with natural hazards,caused by earthquakes,floods and volcanic eruptions,and troubles unlikely come solely from the action of nature.Disasters threatening the human race can be caused also by people themselves.Both types of disasters cause vast human suffering,at the same time destroying cultural heritage as well,that has the function of determining the identity of social communities.These sufferings should be added to those that can be determined only by in-depth analyses which are derived from the synergy of natural forces and mistaken choices made by the humans,when it comes to their habitat.The proposed strategic plan for protection of built heritage in emergency situations may become the powerful catalyst for the process of revitalization by which the social tissue of community is maintained and restored,creating the symbol of resistance by which it endures each and every natural element and evil men behaviour.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
文摘The introduction of invasive insect pests across national borders has become a major concern in crop production. Accordingly, national plant protection organizations are challenge to reinforce their monitoring strategies, which are hampered by the weight and size of inspection equipment, as well as the taxonomic extensiveness of interrupted species. Moreover, some insect pests that impede farmer productivity and profitability are difficult for researchers to address on time due to a lack of appropriate plant protection measures. Farmers’ reliance on synthetic pesticides and biocontrol agents has resulted in major economic and environmental ramifications. DNA barcoding is a novel technology that has the potential to improve Integrated Pest Management decision-making, which is dependent on the ability to correctly identify pest and beneficial organisms. This is due to some natural traits such as phenology or pesticide susceptibility browbeaten by IPM strategies to avert pest establishment. Specifically, Deoxyribonucleic acid (DNA) sequence information was applied effectively for the identification of some micro-organisms. This technology, DNA barcoding, allows for the identification of insect species by using short, standardized gene sequences. DNA barcoding is basically based on repeatable and accessible technique that allows for the mechanisation or automation of species discrimination. This technique bridges the taxonomic bio-security gap and meets the International Plant Protection Convention diagnostic standards for insect identification. This review therefore discusses DNA barcoding as a technique for insect pests’ identification and its potential application for crop protection.