期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research on Network Security Level Protection Measurement Strategy in the Context of Cloud Platforms
1
作者 Lin Ma 《Journal of Electronic Research and Application》 2024年第3期221-229,共9页
Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leak... Platforms facilitate information exchange,streamline resources,and reduce production and management costs for companies.However,some viral information may invade and steal company resources,or lead to information leakage.For this reason,this paper discusses the standards for cybersecurity protection,examines the current state of cybersecurity management and the risks faced by cloud platforms,expands the time and space for training on cloud platforms,and provides recommendations for measuring the level of cybersecurity protection within cloud platforms in order to build a solid foundation for them. 展开更多
关键词 Cloud platform Cyber security Level protection measurement
下载PDF
Signal quality analysis and quality check of BDS3 Precise Point Positioning in the Arctic Ocean 被引量:1
2
作者 Xiaoguo Guan Hongzhou Chai +3 位作者 Guorui Xiao Zhenqiang Du Wenlong Qi Xueping Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第2期166-179,共14页
This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes sig... This study analyzes the signal quality and the accuracy of BeiDou 3 rd generation Satellite Navigation System(BDS3) Precise Point Positioning(PPP) in the Arctic Ocean. Assessment of signal quality of BDS3 includes signal to noise ratio(SNR), multipath(MP), dilution of precision(DOP), and code-minus-carrier combination(CC). The results show that, 5 to 13 satellites are visible at any time in the Arctic Ocean area as of September 2018, which are sufficient for positioning. In the mid-latitude oceanic region and in the Arctic Ocean, the SNR is 25–52 dB Hz and the MP ranges from-2 m to 2 m. As the latitude increases, the DOP values show large variation, which may be related to the distribution of BDS satellites. The CC values of signals B1 I and BIC range from-5 m to 5 m in the mid-latitude sea area and the Arctic Ocean, which means the effect of pseudorange noise is small. Moreover, as to obtain the external precise reference value for GNSS positioning in the Arctic Ocean region is difficult, it is hard to evaluate the accuracy of positioning results. An improved isotropy-based protection level method based on Receiver Autonomous Integrity Monitoring is proposed in the paper, which adopts median filter to smooth the gross errors to assess the precision and reliability of PPP in the Arctic Ocean. At first, the improved algorithm is verified with the data from the International GNSS Service Station Tixi. Then the accuracy of BDS3 PPP in the Arctic Ocean is calculated based on the improved algorithm. Which shows that the kinematic accuracy of PPP can reach the decimeter level in both the horizontal and vertical directions, and it meets the precision requirements of maritime navigation. 展开更多
关键词 BDS3 Arctic Ocean signal quality analysis protection level quality check Precise Point Positioning satellite navigation
下载PDF
Evaluation of BDS and GPS RAIM availability based on data collected in June 2020
3
作者 Xiaping Ma Kegen Yu +3 位作者 Ershen Wang Xiaoxing He Tieding Lu Qinzhen Li 《Geodesy and Geodynamics》 CSCD 2021年第3期181-189,共9页
The satellite pseudo-range fault detection with the Receiver Autonomous Integrity Monitoring(RAIM)method is affected by several satellite observations and the geometric distribution of satellites.The poor geometry dis... The satellite pseudo-range fault detection with the Receiver Autonomous Integrity Monitoring(RAIM)method is affected by several satellite observations and the geometric distribution of satellites.The poor geometry distribution of satellites will conceal the positioning errorcaused by the satellite pseudo-range fault,resulting in unreliable detection results.Therefore,the availability evaluation must be made before RAIM to ensure that the fault detection performance will not be affected.On June 23,2020,China successfully launched the 30 th(last)navigation satellite of BeiDou’s third-generation navigation satellite system(BDS-3),which is also the 55 th BeiDou navigation satellite.Combining all the available satellites of BDS-1,BDS-2 and BDS-3,the positioning performance of BDS can be greatly improved.In order to evaluate the RAIM availability of BeiDou Navigation Satellite System(BDS)and Global Positioning System(GPS)in China,this paper first deduces the mathematical models and their characteristics of the three RAIM availability evaluation methods.Then,the study area(N10°-70°,E60°-150°)is divided into 4536 grid points at intervals of 1°×1°in latitude and longitude,and the elevations of these grid points are taken from the global terrain data file.The Horizontal Protection Level(HPL)values of these grid points are calculated during 8-15 June 2020 using BDS and GPS ephemeris data.The RAIM availability differences between the two systems are compared and analysed.The analysis shows the Horizontal Protection Level method(HPLM)based on single-satellite pseudo-range fault is the most practical and convenient.During the 8-day observation period,the HPL values of BDS are significantly smaller than those of GPS in terms of geographic location and observation time,and the variation of HPL time series of BDS is also smaller than that of GPS,which indicates that the RAIM availability of GPS in China is not as good as that of BDS.Most importantly,in the four flight stages of the aircraft’s Oceanic/Continental lowdensity En-route,Continental En-route,Terminal En-route and Non-precision approach(NPA),BDS can completely satisfy its RAIM availability requirement,while GPS can only meet the availability requirement of the En-route(Oceanic/Continental low density)phase,and the availability of the other three phases can at least reach 99.714%. 展开更多
关键词 BDS GPS RAIM availability Horizontal protection level EVALUATION
下载PDF
Multi‑level autonomous integrity monitoring method for multi‑source PNT resilient fusion navigation
4
作者 Rui Chen Long Zhao 《Satellite Navigation》 SCIE EI CSCD 2023年第3期210-226,共17页
For the integrity monitoring of a multi-source PNT(Positioning,Navigation,and Timing)resilient fusion navigation system,a theoretical framework of multi-level autonomous integrity monitoring is proposed.According to t... For the integrity monitoring of a multi-source PNT(Positioning,Navigation,and Timing)resilient fusion navigation system,a theoretical framework of multi-level autonomous integrity monitoring is proposed.According to the mode of multi-source fusion navigation,the framework adopts the top-down logic structure and establishes the navigation source fault detection model based on the multi-combination separation residual method to detect and isolate the fault source at the system level and subsystem level.For isolated non-redundant navigation sources,the system level recovery verification model is used.For the isolated multi-redundant navigation sources,the sensor fault detection model optimized with the dimension-expanding matrix is used to detect and isolate the fault sensors,and the isolated fault sensors are verified in real-time.Finally,according to the fault detection and verification results at each level,the observed information in the fusion navigation solution is dynamically adjusted.On this basis,the integrity risk dynamic monitoring tree is established to calculate the Protection Level(PL)and evaluate the integrity of the multi-source integrated navigation system.The autonomous integrity monitoring method proposed in this paper is tested using a multi-source navigation system integrated with Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),Long Baseline Location(LBL),and Ultra Short Baseline Location(USBL).The test results show that the proposed method can effectively isolate the fault source within 5 s,and can quickly detect multiple faulty sensors,ensuring that the positioning accuracy of the fusion navigation system is within 5 m,effectively improving the resilience and reliability of the multi-source fusion navigation system. 展开更多
关键词 Autonomous integrity monitoring Fault detection and isolation Multi-source PNT resilient fusion navigation protection level
原文传递
Impact of receiver inter-frequency bias residual uncertainty on dual-frequency GBAS integrity 被引量:1
5
作者 Kai KANG Kun FANG +3 位作者 Yanbo ZHU Yuan LIU Zhipeng WANG Qiang LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第11期349-362,共14页
Dual-Frequency Ground-Based Augmentation Systems(GBAS)can be affected by receiver Inter-Frequency Bias(IFB)when Ionosphere-Free(Ifree)smoothing is applied.In the framework of the proposed GBAS Approach Service Type F(... Dual-Frequency Ground-Based Augmentation Systems(GBAS)can be affected by receiver Inter-Frequency Bias(IFB)when Ionosphere-Free(Ifree)smoothing is applied.In the framework of the proposed GBAS Approach Service Type F(GAST-F),the IFB in the Ifree smoothed pseudorange can be corrected.However,IFB residual uncertainty still exists,which may threaten the integrity of the system.This paper presents an improved algorithm for the airborne protection level considering the residual uncertainty of IFBs to protect the integrity of dual-frequency GBAS.The IFB residual uncertainty multiplied by a frequency factor is included in the Ifree protection level together with the uncertainty of other error sources.To verify the proposed protection level algorithm,we calculate the IFB residual uncertainties of ground reference receivers and user receiver based on BDS B1I and B3I dual-frequency observation data and carry out a test at the Dongying Airport GBAS station.The results show that the proposed Ifree protection level with IFB residual uncertainty is 1.48 times the current protection level on average.The probability of Misleading Information(MI)during the test is reduced from 3.2×10^(-4)to the required value.It is proven that the proposed protection level can significantly reduce the integrity risk brought by IFB residual uncertainty and protect the integrity of dual-frequency GBAS. 展开更多
关键词 GBAS INTEGRITY Inter-frequency bias Ionosphere-free smoothing Vertical protection level
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部