Control technologies are innovated to satisfy increasingly complicated control demands of gas turbine engines.In terms of limit protection control,a novel model-based multivariable limit protection control method,whic...Control technologies are innovated to satisfy increasingly complicated control demands of gas turbine engines.In terms of limit protection control,a novel model-based multivariable limit protection control method,which is achieved by adaptive command reconstruction and multiplecontrol loop selection and switch logic,is proposed in this paper to address the problem of balancing smaller thrust loss and safe operations by comparing with widely-used Min-Max logic.Five different combination modes of control loops,which represent the online control loop of last time instant and that of current time instant,is analyzed.Different command reconstructions are designed for these modes,which is based on static gain conversion of amplitude beyond limits by using an onboard model.The double-prediction based control loop selection and switch logic is developed to choose a control loop appropriately by comparing converted amplitude beyond limits regardless of one or more parameters tending to exceed limits.The proposed method is implemented in a twin-spool turbofan engine to achieve limit protection with direct thrust control,and the loss of thrust is improved by about 30% in comparison with the loss of thrust caused by Min-Max logic when limit protection control is activated,which demonstrates the effectiveness of the proposed method.展开更多
To achieve a constant current limit,low power consumption and high driving capability,a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented.The current-limit threshold is dynamically a...To achieve a constant current limit,low power consumption and high driving capability,a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented.The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA.To increase the loop stability of the proposed LDO,a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole,and a zero is designed for the purpose of the second pole phase compensation.The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA,the constant limit current under a high drop-out voltage is 440 mA,and the maximum load current under a low drop-out voltage is up to 800 mA. In addition,the quiescent current of the LDO is only 7μA,the load regulation is about 0.56%on full scale,the line regulation is about 0.012%/V,the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA.展开更多
A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for...A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for the transient state control and its stability proof is developed using Linear Matrix Inequalities(LMIs). The SCG is an add-on control scheme which manages engine limits effectively based on reference trajectory optimization. Unlike the traditional min–max architecture with switching logic, the SCG method utilizes the Linear Parameter Varying(LPV) closed-loop model to form a prediction of future constraint violation and per instant solves a constraint-admissible reference within an approximate Maximal Output Admissible Set(MOAS).The influence of the variation of engine dynamic characteristics and equilibrium points during transient state control is handled by the design of contractive sets. Simulation results on a turbofan engine component-level model show the applicability and effectiveness of the SCG method. Compared to the traditional min–max method, the SCG method has less conservativeness. In addition,the design of contractive sets makes conservativeness tunable.展开更多
The operation mode of power grids with intermittent distributed generations(DGs)changes frequently due to the bidirectional power flow.In comparison with the conventional grids,the protection relays in power grids wit...The operation mode of power grids with intermittent distributed generations(DGs)changes frequently due to the bidirectional power flow.In comparison with the conventional grids,the protection relays in power grids with micro-sources are more difficult to set.To tackle this problem,this paper proposes an extended bus differential protection(EBDP)strategy based on the limited wide area(LWA).In this method,the micro-grids are divided into several protection areas at the core of the bus.The whole protection areas are protected by the wide area current differential relays,which are also configured to protect each component in this protection area.Moreover,the protection areas can be changed adaptively according to the power flow direction.Finally,a micro-grid model with multiple DGs is developed using the PSCAD/EMTDC platform.The simulation results indicate that the proposed adaptive limited wide area differential protection(LWADP)has better performance than the traditional relaying protection in detecting the faulty area in micro-grids and isolating the fault,and can be widely utilized in larger micro-grids.展开更多
The urgent problem of the relaying protection in the modern AC/DC hybrid connected grid and the development of the wide area communication,the information process and the intelligent technology powerfully promotes the...The urgent problem of the relaying protection in the modern AC/DC hybrid connected grid and the development of the wide area communication,the information process and the intelligent technology powerfully promotes the development of the technology of the wide area relaying protection(WARP),which has become a research hotspot that attracts extensive attention.Originated from the basic concept of the wide area relaying protection,this paper analyses the advantages,the effects and the functions of the wide area relaying protection.The two main approaches to realize the wide area protection,which are on-line adaptive setting(OAS)principle and fault element identification(FEI),are introduced in this paper.Aimed at improving the performance of the backup protection,the research content and the technology demand of the wide area protection are proposed,meanwhile,the basic principle and the algorithm of the fault element identification are introduced.At last,the scheme of the limited wide area relaying protection based on the existing pilot channel of the main protection is discussed.展开更多
A nonlinear model predictive control method based on fuzzy-Sequential Quadratic Programming(SQP)for direct thrust control is proposed in this paper for the sake of improving the accuracy of thrust control.The designed...A nonlinear model predictive control method based on fuzzy-Sequential Quadratic Programming(SQP)for direct thrust control is proposed in this paper for the sake of improving the accuracy of thrust control.The designed control system includes four parts,namely a predictive model,rolling optimization,online correction,and feedback correction.Considering the strong nonlinearity of engine,a predictive model is established by Back Propagation(BP)neural network for the entire flight envelope,whose input and output are determined with random forest algorithm and actual situation analysis.Rolling optimization typically uses SQP as the optimization algorithm,but SQP algorithm is easy to trap into local optimization.Therefore,the fuzzy-SQP algorithm is proposed to prevent this disadvantage using fuzzy algorithm to determine the initial value of SQP.In addition to the traditional three parts of model predictive control,an online correction module is added to improve the predictive accuracy of the predictive model in the predictive time domain.Simulation results show that the BP predictive model can reach a certain degree of predictive accuracy,and the proposed control system can achieve good tracking performance with the limited parameters within the safe range。展开更多
基金supported by China Scholarship Council(No.201906830081)。
文摘Control technologies are innovated to satisfy increasingly complicated control demands of gas turbine engines.In terms of limit protection control,a novel model-based multivariable limit protection control method,which is achieved by adaptive command reconstruction and multiplecontrol loop selection and switch logic,is proposed in this paper to address the problem of balancing smaller thrust loss and safe operations by comparing with widely-used Min-Max logic.Five different combination modes of control loops,which represent the online control loop of last time instant and that of current time instant,is analyzed.Different command reconstructions are designed for these modes,which is based on static gain conversion of amplitude beyond limits by using an onboard model.The double-prediction based control loop selection and switch logic is developed to choose a control loop appropriately by comparing converted amplitude beyond limits regardless of one or more parameters tending to exceed limits.The proposed method is implemented in a twin-spool turbofan engine to achieve limit protection with direct thrust control,and the loss of thrust is improved by about 30% in comparison with the loss of thrust caused by Min-Max logic when limit protection control is activated,which demonstrates the effectiveness of the proposed method.
基金supported by the Ministerial "12th Five-Year" Pre-Research Fund of China(No.413080203)
文摘To achieve a constant current limit,low power consumption and high driving capability,a micro-power LDO with a piecewise voltage-foldback current-limit circuit is presented.The current-limit threshold is dynamically adjusted to achieve a maximum driving capability and lower quiescent current of only 300 nA.To increase the loop stability of the proposed LDO,a high impedance transconductance buffer under a micro quiescent current is designed for splitting the pole that exists at the gate of the pass transistor to the dominant pole,and a zero is designed for the purpose of the second pole phase compensation.The proposed LDO is fabricated in a BiCMOS process. The measurement results show that the short-circuit current of the LDO is 190 mA,the constant limit current under a high drop-out voltage is 440 mA,and the maximum load current under a low drop-out voltage is up to 800 mA. In addition,the quiescent current of the LDO is only 7μA,the load regulation is about 0.56%on full scale,the line regulation is about 0.012%/V,the PSRR at 120 Hz is 58 dB and the drop-out voltage is only 70 mV when the load current is 250 mA.
基金supported by National Science and Technology Major Project of China(No.2017-V-0004-0054)。
文摘A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for the transient state control and its stability proof is developed using Linear Matrix Inequalities(LMIs). The SCG is an add-on control scheme which manages engine limits effectively based on reference trajectory optimization. Unlike the traditional min–max architecture with switching logic, the SCG method utilizes the Linear Parameter Varying(LPV) closed-loop model to form a prediction of future constraint violation and per instant solves a constraint-admissible reference within an approximate Maximal Output Admissible Set(MOAS).The influence of the variation of engine dynamic characteristics and equilibrium points during transient state control is handled by the design of contractive sets. Simulation results on a turbofan engine component-level model show the applicability and effectiveness of the SCG method. Compared to the traditional min–max method, the SCG method has less conservativeness. In addition,the design of contractive sets makes conservativeness tunable.
文摘The operation mode of power grids with intermittent distributed generations(DGs)changes frequently due to the bidirectional power flow.In comparison with the conventional grids,the protection relays in power grids with micro-sources are more difficult to set.To tackle this problem,this paper proposes an extended bus differential protection(EBDP)strategy based on the limited wide area(LWA).In this method,the micro-grids are divided into several protection areas at the core of the bus.The whole protection areas are protected by the wide area current differential relays,which are also configured to protect each component in this protection area.Moreover,the protection areas can be changed adaptively according to the power flow direction.Finally,a micro-grid model with multiple DGs is developed using the PSCAD/EMTDC platform.The simulation results indicate that the proposed adaptive limited wide area differential protection(LWADP)has better performance than the traditional relaying protection in detecting the faulty area in micro-grids and isolating the fault,and can be widely utilized in larger micro-grids.
基金supported by National Natural Science Foundation of China Science Foundation of China(No.50377031 and No.50837002).
文摘The urgent problem of the relaying protection in the modern AC/DC hybrid connected grid and the development of the wide area communication,the information process and the intelligent technology powerfully promotes the development of the technology of the wide area relaying protection(WARP),which has become a research hotspot that attracts extensive attention.Originated from the basic concept of the wide area relaying protection,this paper analyses the advantages,the effects and the functions of the wide area relaying protection.The two main approaches to realize the wide area protection,which are on-line adaptive setting(OAS)principle and fault element identification(FEI),are introduced in this paper.Aimed at improving the performance of the backup protection,the research content and the technology demand of the wide area protection are proposed,meanwhile,the basic principle and the algorithm of the fault element identification are introduced.At last,the scheme of the limited wide area relaying protection based on the existing pilot channel of the main protection is discussed.
基金supported by the Fundamental Research Enhancement Project,China(No.2017-JCJQ-ZD-047-21).
文摘A nonlinear model predictive control method based on fuzzy-Sequential Quadratic Programming(SQP)for direct thrust control is proposed in this paper for the sake of improving the accuracy of thrust control.The designed control system includes four parts,namely a predictive model,rolling optimization,online correction,and feedback correction.Considering the strong nonlinearity of engine,a predictive model is established by Back Propagation(BP)neural network for the entire flight envelope,whose input and output are determined with random forest algorithm and actual situation analysis.Rolling optimization typically uses SQP as the optimization algorithm,but SQP algorithm is easy to trap into local optimization.Therefore,the fuzzy-SQP algorithm is proposed to prevent this disadvantage using fuzzy algorithm to determine the initial value of SQP.In addition to the traditional three parts of model predictive control,an online correction module is added to improve the predictive accuracy of the predictive model in the predictive time domain.Simulation results show that the BP predictive model can reach a certain degree of predictive accuracy,and the proposed control system can achieve good tracking performance with the limited parameters within the safe range。