This paper briefs the developmental course, manufacturing and applications, as well as future prospect of excitation systems of large size turbogenerators in China, emphatically expounds the advantages of seif-excitat...This paper briefs the developmental course, manufacturing and applications, as well as future prospect of excitation systems of large size turbogenerators in China, emphatically expounds the advantages of seif-excitation systems with potential source reetifiers and matters needing to be noted during dissemination and application of them.展开更多
A new brushless excitation system with the modified microcomputer-based regulator developed by NARI was put into operation recently on a 300 MW #4 generator, Hanchuan plant, Hubei province. The hardware and software i...A new brushless excitation system with the modified microcomputer-based regulator developed by NARI was put into operation recently on a 300 MW #4 generator, Hanchuan plant, Hubei province. The hardware and software implementation of the regulator is briefly described in the paper. The onsite smooth operation of the generator with this excitation system proves that the system is quite展开更多
The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the...The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the three-dimensional electromagnetic field in the HIM,and the distribution and characteristics of the magnetic field are described.The analytical method is applied to investigate the design process of the excitation winding.The ratio of the axial length of the armature winding to the excitation winding and the ratio of the axial length of the working air-gap to the non-working air-gap are investigated by the numerical calculation method.A prototype HIM is designed and manufactured,and some experiments are implemented to verify the correctness of the theoretical analysis and numerical calculation results.The research results show that the established design method of the excitation winding is practical and feasible.Under the conditions of constant excitation magnetomotive force or constant excitation power,the optimum range of the axial length ratio of the armature winding and the excitation winding is 0.45 to 0.5.The optimal axial length of the non-working air-gap can be determined by the ratio of the stator inner diameter and pole-pairs.展开更多
Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi...Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.展开更多
The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is avai...The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.展开更多
We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "...We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "Regulations for the Construction and Classification of Ocean-going Steel Ships" of the China Classification Society (CCS) , some experiments are designed to verify the property of the simulation model. Some experiments, such as free start, load sudden on and off, have been CO is mpleted, and the result indicates that the model conforms to the requirements of the rules very well. It qualified for a marine electrical propulsion simulation.展开更多
MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchr...MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.展开更多
Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseas...Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseases such as Alzheimer's disease, and mental disorders such as schizophrenia(Barateiro et al., 2016). Repair of damaged myelin sheaths(remyelination) often fails in MS, leading to neuronal loss and irreversible functional deficits.展开更多
Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological cond...Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented i...A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.展开更多
In this paper,an optimal nonlinear robust sliding mode control(ONRSMC)based on mixed H_(2)/H_(∞)linear matrix inequalities(LMIs)is designed for the excitation system in a“one machine-infinite bus system”(OMIBS)to e...In this paper,an optimal nonlinear robust sliding mode control(ONRSMC)based on mixed H_(2)/H_(∞)linear matrix inequalities(LMIs)is designed for the excitation system in a“one machine-infinite bus system”(OMIBS)to enhance system stability.Initially,the direct feedback linearization method is used to establish a mathematical model of the OMIBS incorporating uncertainties.ONRSMC is then designed for this model,employing the mixed H_(2)/H_(∞)LMIs.The chaos mapping-based adaptive salp swarm algorithm(CASSA)is introduced to fully optimize the parameters of the sliding mode control,ensuring optimal performance under a specified condition.CASSA demonstrates rapid convergence and reduced like-lihood of falling into local optima during optimization.Finally,ONRSMC is obtained through inverse transformation,exhibiting the advantages of simple structure,high reliability,and independence from the accuracy of system models.Four simulation scenarios are employed to validate the effectiveness and robustness of ONRSMC,including mechanical power variation,generator three-phase short circuit,transmission line short circuit,and generator parameter uncertainty.The results indicate that ONRSMC achieves optimal dynamic performance in various operating conditions,facilitating the stable operation of power systems following faults.展开更多
The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses ...The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
An electronic information system is composed of multiple groups of components. With the improvement of technology, its accuracy is getting higher and higher. The voltage during normal operation is only a few volts, an...An electronic information system is composed of multiple groups of components. With the improvement of technology, its accuracy is getting higher and higher. The voltage during normal operation is only a few volts, and the information current is only microamp, so the withstand voltage to lightning electromagnetic pulse is extremely low. In this paper, the negative impact of lightning and static electricity on the computer room of an electronic information system was analyzed firstly, and then the design for the lightning protection of the computer room was discussed.展开更多
It is a basic requirement of eco-garden city construction to establish a biodiversity protection system,and also a concrete requirement of ecological development for an eco-garden city.Biodiversity protection system o...It is a basic requirement of eco-garden city construction to establish a biodiversity protection system,and also a concrete requirement of ecological development for an eco-garden city.Biodiversity protection system of the eco-garden city includes the following contents:clarifying hierarchical requirements of the urban biodiversity protection,that is,classified protection of planning hierarchy and biodiversity hierarchy;achieving biodiversity protection via the planning system;establishing a quantity index system of urban biodiversity protection.Major strategies for establishing the biodiversity protection system were given as below:giving proper ecological planning and design;providing policy and law support;enhancing the construction of humanistic and education environment.Study on biodiversity protection system in eco-garden city may become an important support for the future quality evaluation of urban construction.展开更多
The reliability and availability of the reactor protection system (RPS) can be improved by using M out of N judg- ment system. By analyzing two quantitative indicators, the rate of refusal to operate and mal-operati...The reliability and availability of the reactor protection system (RPS) can be improved by using M out of N judg- ment system. By analyzing two quantitative indicators, the rate of refusal to operate and mal-operation rate, a strict math- ematical formula and an approximate calculation are stated. The differences of a series of judgment systems are discussed on condition that the unsafe failure probability and the security failure probability are both 0.1. Based on given parameters (A, B,P, Q): A is upper limit of the refusal rate for the RPS, B is upper limit of the real-operation rate, P and Q are basic protection unit rates corresponding to refusal rate and mal-operation rate, respectively. According to these parameters, the values of N and M can be solved.展开更多
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi...Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.展开更多
Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and su...Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.展开更多
Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and...Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and scavenging the active oxygen is unclear under continuance of the water stress. The experiment was carried out in growth chamber to investigate the effects of water stress on the production of superoxide free radical (O2), hydrogen peroxide (H202), malondialdehyde (MDA), reduced glutathione (GSH), ascorbic acid (AsA), and antioxidative enzyme activities in three rice hybrids with differing drought resistant under both normal and drought conditions during grain-filling stage. The results showed that water stress aggravated the membrane lipid peroxidation in rice leaves, which was more severe in less drought resistant hybrids than that in more tolerant ones. Also O2' and H2O2 accumulated more rapidly in less drought resistant hybrids than that in more tolerant ones. During water stress, decreases of GSH, AsA, chlorophyll, and relative water contents in more drought resistant hybrids were obvious less than those in less tolerant ones. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in/eaves increased obviously in 0-14 d after heading and subsequently decreased rapidly, and those in more drought resistant hybrids were more than those in less tolerant ones. The results showed that changes of O2, H2O2, MDA, GSH, and AsA contents and antioxidative enzyme activities correlated significantly to drought resistance of rice hybrids, and more drought resistant hybrids possessed high ant oxidation capacity.展开更多
文摘This paper briefs the developmental course, manufacturing and applications, as well as future prospect of excitation systems of large size turbogenerators in China, emphatically expounds the advantages of seif-excitation systems with potential source reetifiers and matters needing to be noted during dissemination and application of them.
文摘A new brushless excitation system with the modified microcomputer-based regulator developed by NARI was put into operation recently on a 300 MW #4 generator, Hanchuan plant, Hubei province. The hardware and software implementation of the regulator is briefly described in the paper. The onsite smooth operation of the generator with this excitation system proves that the system is quite
基金The National Natural Science Foundation of China(No.51977035)。
文摘The excitation system of the homopolar inductor machine(HIM)is analyzed and designed to establish the design approach and evaluation criteria of the excitation system.The finite element method is used to calculate the three-dimensional electromagnetic field in the HIM,and the distribution and characteristics of the magnetic field are described.The analytical method is applied to investigate the design process of the excitation winding.The ratio of the axial length of the armature winding to the excitation winding and the ratio of the axial length of the working air-gap to the non-working air-gap are investigated by the numerical calculation method.A prototype HIM is designed and manufactured,and some experiments are implemented to verify the correctness of the theoretical analysis and numerical calculation results.The research results show that the established design method of the excitation winding is practical and feasible.Under the conditions of constant excitation magnetomotive force or constant excitation power,the optimum range of the axial length ratio of the armature winding and the excitation winding is 0.45 to 0.5.The optimal axial length of the non-working air-gap can be determined by the ratio of the stator inner diameter and pole-pairs.
基金supports from National Science Foundation of China(Grant No.51777121).
文摘Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.
文摘The fast excitation system of a composite magnetic controllable reactor is introduced. In this excitation system, a bidirectional function (i.e. fast forward excitation and backward forcible demagnetization) is available, which can significantly improve the response speed, performances, and application scope of magnetic controllable reactor.
基金The paper is supported by the National Research Foundation of China for Doctoral Program of Higher Education under Grant No20040497012
文摘We first established the mathematical model of a marine synchronous generator and its controllable phase-compounding excitation system, and then made a simulation sketch with Saber simulation software. According to "Regulations for the Construction and Classification of Ocean-going Steel Ships" of the China Classification Society (CCS) , some experiments are designed to verify the property of the simulation model. Some experiments, such as free start, load sudden on and off, have been CO is mpleted, and the result indicates that the model conforms to the requirements of the rules very well. It qualified for a marine electrical propulsion simulation.
文摘MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.
基金supported by a grant from Aston University,Birmingham,UK (to DM)。
文摘Myelin is the protective sheath surrounding nerve fibers, and its damage(demyelination) occurs in many central nervous system(CNS) diseases, including multiple sclerosis(MS), traumatic injury, neurodegenerative diseases such as Alzheimer's disease, and mental disorders such as schizophrenia(Barateiro et al., 2016). Repair of damaged myelin sheaths(remyelination) often fails in MS, leading to neuronal loss and irreversible functional deficits.
基金supported by Fonds Clinatec and COVEA France(to JM).
文摘Neurons are notoriously vulnerable cell types.Even the slightest change in their internal and/or external environments will cause much distress and dysfunction,leading often to their death.A range of pathological conditions,including stroke,head trauma,and neurodegenerative disease,can generate stress in neurons,affecting their survival and proper function.In most neural pathologies,mitochondria become dysfunctional and this plays a pivotal role in the process of cell death.The challenge over the last few decades has been to develop effective interventions that improve neuronal homeostasis under pathological conditions.Such interventions,often referred to as disease-modifying or neuroprotective,have,however,proved frustratingly elusive,at both preclinical and,in particular,clinical levels.In this perspective,we highlight two factors that we feel are key to the development of effective neuroprotective treatments.These are:firstly,the choice of dose of intervention and method of application,and secondly,the selection of subjects,whether they be patients or the animal model.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金co-financed by the European Regional Development Fund of the European UnionGreek national funds through the Operational Program Competitiveness,Entrepreneurship and Innovation,under the call RESEARCH-CREATE-INNOVATE(project code:T1EDK-04429)。
文摘A philosophy for the design of novel,lightweight,multi-layered armor,referred to as Composite Armor Philosophy(CAP),which can adapt to the passive protection of light-,medium-,and heavy-armored vehicles,is presented in this study.CAP can serve as a guiding principle to assist designers in comprehending the distinct roles fulfilled by each component.The CAP proposal comprises four functional layers,organized in a suggested hierarchy of materials.Particularly notable is the inclusion of a ceramic-composite principle,representing an advanced and innovative solution in the field of armor design.This paper showcases real-world defense industry applications,offering case studies that demonstrate the effectiveness of this advanced approach.CAP represents a significant milestone in the history of passive protection,marking an evolutionary leap in the field.This philosophical approach provides designers with a powerful toolset with which to enhance the protection capabilities of military vehicles,making them more resilient and better equipped to meet the challenges of modern warfare.
基金supported by the National Natural Science Foundation of China(No.51979204 and No.52009096)the Fundamental Research Funds for the Central Universities(No.2042022kf1022)the Hubei Provincial Natural Science Foundation of China(No.2022CFD165).
文摘In this paper,an optimal nonlinear robust sliding mode control(ONRSMC)based on mixed H_(2)/H_(∞)linear matrix inequalities(LMIs)is designed for the excitation system in a“one machine-infinite bus system”(OMIBS)to enhance system stability.Initially,the direct feedback linearization method is used to establish a mathematical model of the OMIBS incorporating uncertainties.ONRSMC is then designed for this model,employing the mixed H_(2)/H_(∞)LMIs.The chaos mapping-based adaptive salp swarm algorithm(CASSA)is introduced to fully optimize the parameters of the sliding mode control,ensuring optimal performance under a specified condition.CASSA demonstrates rapid convergence and reduced like-lihood of falling into local optima during optimization.Finally,ONRSMC is obtained through inverse transformation,exhibiting the advantages of simple structure,high reliability,and independence from the accuracy of system models.Four simulation scenarios are employed to validate the effectiveness and robustness of ONRSMC,including mechanical power variation,generator three-phase short circuit,transmission line short circuit,and generator parameter uncertainty.The results indicate that ONRSMC achieves optimal dynamic performance in various operating conditions,facilitating the stable operation of power systems following faults.
基金supported by the Key Research and Development Program of Ningxia Hui Autonomous Region,China(2022BEG02003)the Excellent Member of Youth Innovation Promotion Association,Chinese Academy of Sciences(Y202085)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2023448).
文摘The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘An electronic information system is composed of multiple groups of components. With the improvement of technology, its accuracy is getting higher and higher. The voltage during normal operation is only a few volts, and the information current is only microamp, so the withstand voltage to lightning electromagnetic pulse is extremely low. In this paper, the negative impact of lightning and static electricity on the computer room of an electronic information system was analyzed firstly, and then the design for the lightning protection of the computer room was discussed.
文摘It is a basic requirement of eco-garden city construction to establish a biodiversity protection system,and also a concrete requirement of ecological development for an eco-garden city.Biodiversity protection system of the eco-garden city includes the following contents:clarifying hierarchical requirements of the urban biodiversity protection,that is,classified protection of planning hierarchy and biodiversity hierarchy;achieving biodiversity protection via the planning system;establishing a quantity index system of urban biodiversity protection.Major strategies for establishing the biodiversity protection system were given as below:giving proper ecological planning and design;providing policy and law support;enhancing the construction of humanistic and education environment.Study on biodiversity protection system in eco-garden city may become an important support for the future quality evaluation of urban construction.
基金Research Project of Hunan Province Education Department(No.14C0972)
文摘The reliability and availability of the reactor protection system (RPS) can be improved by using M out of N judg- ment system. By analyzing two quantitative indicators, the rate of refusal to operate and mal-operation rate, a strict math- ematical formula and an approximate calculation are stated. The differences of a series of judgment systems are discussed on condition that the unsafe failure probability and the security failure probability are both 0.1. Based on given parameters (A, B,P, Q): A is upper limit of the refusal rate for the RPS, B is upper limit of the real-operation rate, P and Q are basic protection unit rates corresponding to refusal rate and mal-operation rate, respectively. According to these parameters, the values of N and M can be solved.
基金supported by the Key Projects of the National Natural Science Foundation of China,No.11932013(to XC)Key Military Logistics Research Projects,No.B WJ21J002(to XC)+4 种基金the Key projects of the Special Zone for National Defence Innovation,No.21-163-12-ZT006002-13(to XC)the National Nature Science Foundation of China No.82272255(to XC)the National Defense Science and Technology Outstanding Youth Science Fund Program,No.2021-JCIQ-ZQ-035(to XC)the Scientific Research Innovation Team Project of Armed Police Characteristic Medical Center,No.KYCXTD0104(to ZL)the National Natural Science Foundation of China Youth Fund,No.82004467(to BC)。
文摘Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.
基金supported by the National Natural Science Foundation of China(81703947)the Fundamental Research Funds for the Central Universities(2019-JYB-XJSJJ-011).
文摘Objective:To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge(S.miltiorrhiza,Dan Shen)and C.tinctorius L.(C.tinctorius,Hong Hua)as an herb pair through network pharmacology and subsequent experimental validation.Methods:Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of s.miltiorrhiza and C.tinctorius as herb pair.Molecular docking was used to verify the binding of the components of these herbs and their potential targets.An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects,which were evaluated using the combination index.Western blot was performed to detect the protein expression of these targets.Results:Network pharmacology analysis revealed 5 pathways and 8 core targets of s.miltiorrhiza and C.tinctorius in myocardial protection.Five of the core targets were enriched in the hypoxia-inducible factor-1(HIF-1)signaling pathway.S.miltiorrhiza-C.tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway.As an upstream gene of the HIF-1 pathway,STAT3 can be activated by the active ingredients cryptotanshinone(Ctan),salvianolic acid B(Sal.B),and myricetin(Myric).Cell experiments revealed that Myric,Sal.B,and Ctan also exhibited synergistic myocardial protective activity.Molecular docking verified the strong binding of Myric,Sal.B,and Ctan to STAT3.Western blot further showed that the active ingredients synergistically upregulated the protein expressionof STAT3.Conclusion:The pharmacodynamic transmission analysis revealed that the active ingredients of S.miltiorrhiza and C.tinctorius can synergistically resist ischemia through various targets and pathways.This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.
基金supported by the National 863 Program of China (2002AA2Z4011)the Foundation for Personnel of Henan University of Science and Technology China.
文摘Rice is one of the main staple food crops in the world, but it may suffer serious water stress during growth period. Water stress during grain filling results in decreased grain yeild, but its mechanism generating and scavenging the active oxygen is unclear under continuance of the water stress. The experiment was carried out in growth chamber to investigate the effects of water stress on the production of superoxide free radical (O2), hydrogen peroxide (H202), malondialdehyde (MDA), reduced glutathione (GSH), ascorbic acid (AsA), and antioxidative enzyme activities in three rice hybrids with differing drought resistant under both normal and drought conditions during grain-filling stage. The results showed that water stress aggravated the membrane lipid peroxidation in rice leaves, which was more severe in less drought resistant hybrids than that in more tolerant ones. Also O2' and H2O2 accumulated more rapidly in less drought resistant hybrids than that in more tolerant ones. During water stress, decreases of GSH, AsA, chlorophyll, and relative water contents in more drought resistant hybrids were obvious less than those in less tolerant ones. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in/eaves increased obviously in 0-14 d after heading and subsequently decreased rapidly, and those in more drought resistant hybrids were more than those in less tolerant ones. The results showed that changes of O2, H2O2, MDA, GSH, and AsA contents and antioxidative enzyme activities correlated significantly to drought resistance of rice hybrids, and more drought resistant hybrids possessed high ant oxidation capacity.