This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the develo...This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the development of a plastic zone. Also this study developed a stress change and fracture development model of the underlying coal-rock mass. In addition, the stress and depth of fracture of any point in the floor were deduced with the application of Maple Calculation Software. The specific engineering parameters of the Pingdingshan No. 12 colliery were applied to determine the relationship between the depth of fracture in the floor and the mining height. The pressure-relief principle of the underlying coal-rock mass was analyzed while varying the mining height of the upper protective seam. The findings indicate that as the depth of fracture in the floor increases, the underlying coal-rock mass experiences a limited amount of pressure relief, and the pressure relief protection range becomes narrower.Additionally, the stress distribution evolves from a ‘‘U" shape into a ‘‘V" shape. A 2.0 m mining height of protective seam situates the outburst-prone seam, Ji_(15), within the effective pressure relief protection range. The fracture development and stress-relief ratio rises to 88%, ensuring the pressure-relief effect as well as economic benefits. The measurement data show that: after mining the upper protective seam, the gas pressure of Ji_(15) dropped from 1.78 to 0.35 MPa, demonstrating agreement between the engineering application and the theoretical calculation.展开更多
When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stra...When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.展开更多
Severe gas disasters in deep mining areas are increasing,and traditional protective coal seam mining is facing significant challenges.This paper proposes an innovative technology using soft rock as the protective seam...Severe gas disasters in deep mining areas are increasing,and traditional protective coal seam mining is facing significant challenges.This paper proposes an innovative technology using soft rock as the protective seam in the absence of an appropriate coal seam.Based on the geological engineering conditions of the new horizontal first mining area of Luling Coal Mine in Huaibei,China,the impacts of different mining parameters of the soft-rock protective seam on the pressure-relief effect of the protected coal seam were analyzed through numerical simulation.The unit stress of the protected coal seam,which was less than half of the primary rock stress,was used as the mining stress pressure-relief index.The optimized interlayer space was found to be 59 m for the first soft-rock working face,with a 2 m mining thickness and 105 m face length.The physicochemical characteristics of the orebody were analyzed,and a device selection framework for the soft-rock protective seam was developed.Optimal equipment for the working face was selected,including the fully-mechanized hydraulic support and coal cutter.A production technology that combined fully-mechanized and blasting-assisted soft-rock mining was developed.Engineering practices demonstrated that normal circulation operation can be achieved on the working face of the soft-rock protective seam,with an average advancement rate of 1.64 m/d.The maximum residual gas pressure and content,which were measured at the cut hole position of the protected coal seams(Nos.8 and 9),decreased to 0.35 MPa and 4.87 m^3/t,respectively.The results suggested that soft-rock protective seam mining can produce a significant gas-control effect.展开更多
Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological ...Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.展开更多
Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT com...Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT computational fluid mechanics software is used to solve the mass,momentum and species conservation equations of the model.The spatial distributions of oxygen and methane was obtained by calculations and the drainage results of different drill-hole positions were compared.The results show that,from top to bottom,methane dilution by oxygen weakens gradually from the intake to the return side,and methane tends to float;methane and oxygen distribute horizontally.The high-level crossing holes contribute to better methane drainage and a greater level of control.Around these holes,the methane density decreases dramatically and a "half circle"distribution is formed.The methane density decreases on the whole,but a proportion of the methane moves back to deep into the goaf.The research findings provide theoretical grounds for methane drainage.展开更多
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The researc...A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.展开更多
According to the specific geological condition, analyzed the stress distribution of the overlying strata, the displacement of pressure released seam, thickness variation and the distribution of plastic zones by FLAG3D...According to the specific geological condition, analyzed the stress distribution of the overlying strata, the displacement of pressure released seam, thickness variation and the distribution of plastic zones by FLAG3D software to simulate mining of the long-distance lower protective seam. The research results show that the distribution of vertical stress appears as a "Double-hump" within the pressure-relief range of the protected coal seam and the swelling deformation curve of coal bodies takes an "M" shape. The swelling is divided into initial swelling, swelling increase and swelling compression stability. The maximum swelling ratio of the pressure released seam is 1.84%, protection angle of the lower protective coal seam along the strike direction is about 55°, protection angle below the dip direction is about 50°, protection angle above the dip direction is about 55°, and the coal seam compression zone resembles a "U" shape.展开更多
To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture devel...To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture development of floor coal-rock mass of the protective seam and migration rule of pressure-relief gas from a protected seam so as to obtain an effective pressure- relief gas extraction method.The results show that after the upper protective seam was mined,mining-induced fracturing floor coal-rock mas...展开更多
Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation ...Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation of the No.9-10 protected seamwere studied. The experiment results show that it is feasible to destress the protectedseams with large interburden thickness. When the face had advanced 200 m from thesetup room, the No.9-10 seam was fully destressed, resulting in easy gas drainage in thedestressed zone. Recommendations on mining sequence of multiple seams mining in thesame coal areas were made.展开更多
Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding roc...Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.展开更多
Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam...Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.展开更多
For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test sta...For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.展开更多
基金supported by the Foundation for Distinguished professor of Jiangsu Provincethe Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.51421003)
文摘This paper analyzes the control mechanism of coal and gas outbursts and proposes the concept of an effective pressure relief protection range, based on the stress relief of the underlying coal-rock mass and the development of a plastic zone. Also this study developed a stress change and fracture development model of the underlying coal-rock mass. In addition, the stress and depth of fracture of any point in the floor were deduced with the application of Maple Calculation Software. The specific engineering parameters of the Pingdingshan No. 12 colliery were applied to determine the relationship between the depth of fracture in the floor and the mining height. The pressure-relief principle of the underlying coal-rock mass was analyzed while varying the mining height of the upper protective seam. The findings indicate that as the depth of fracture in the floor increases, the underlying coal-rock mass experiences a limited amount of pressure relief, and the pressure relief protection range becomes narrower.Additionally, the stress distribution evolves from a ‘‘U" shape into a ‘‘V" shape. A 2.0 m mining height of protective seam situates the outburst-prone seam, Ji_(15), within the effective pressure relief protection range. The fracture development and stress-relief ratio rises to 88%, ensuring the pressure-relief effect as well as economic benefits. The measurement data show that: after mining the upper protective seam, the gas pressure of Ji_(15) dropped from 1.78 to 0.35 MPa, demonstrating agreement between the engineering application and the theoretical calculation.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth 5-Year Key Scientific and Technological Project
文摘When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.
文摘Severe gas disasters in deep mining areas are increasing,and traditional protective coal seam mining is facing significant challenges.This paper proposes an innovative technology using soft rock as the protective seam in the absence of an appropriate coal seam.Based on the geological engineering conditions of the new horizontal first mining area of Luling Coal Mine in Huaibei,China,the impacts of different mining parameters of the soft-rock protective seam on the pressure-relief effect of the protected coal seam were analyzed through numerical simulation.The unit stress of the protected coal seam,which was less than half of the primary rock stress,was used as the mining stress pressure-relief index.The optimized interlayer space was found to be 59 m for the first soft-rock working face,with a 2 m mining thickness and 105 m face length.The physicochemical characteristics of the orebody were analyzed,and a device selection framework for the soft-rock protective seam was developed.Optimal equipment for the working face was selected,including the fully-mechanized hydraulic support and coal cutter.A production technology that combined fully-mechanized and blasting-assisted soft-rock mining was developed.Engineering practices demonstrated that normal circulation operation can be achieved on the working face of the soft-rock protective seam,with an average advancement rate of 1.64 m/d.The maximum residual gas pressure and content,which were measured at the cut hole position of the protected coal seams(Nos.8 and 9),decreased to 0.35 MPa and 4.87 m^3/t,respectively.The results suggested that soft-rock protective seam mining can produce a significant gas-control effect.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth Five-Year Key Scientific and Technological Project
文摘Numerical simulations and field tests were used to investigate the changes in ground stress and deformation of, and gas flow from, a protected coal seam under which an extra-thin coal seam was drilled. The geological conditions were: 0.5 meter mining height, 18.5 meter coal seam spacing and a hard limestone/fine sandstone inter-stratum. For these conditions we conclude: 1) the overlying coal-rock mass bends and sinks without the appearance of a caving zone, and 2) the protected coal seam is in the bending zone and undergoes expansion deformation in the stress-relaxed area. The deformation was 12 mm and the relative defor- mation was 0.15%. As mining proceeds, deformation in the protected layer begins as compression, then becomes a rapid expansion and, finally, reaches a stable value. A large number of bed separation crannies are created in the stress-relaxed area and the permeability coefficient of the coal seam was increased 403 fold. Grid penetration boreholes were evenly drilled toward the protected coal seam to affect pressure relief and gas drainage. This made the gas pressure decrease from 0.75 to 0.15 MPa, the gas content decrease from 13 to 4.66 m3/t and the gas drainage reach 64%.
基金The authors gratefully acknowledge the financial support of the 2013 Science and Technological Projects of Henan Province(132102210448).
文摘Different drill-hole positions may produce different drainage results in low protective coal seams.To investigate this possibility,a 3D stope model is established,which covers three kinds of drill holes.The FLUENT computational fluid mechanics software is used to solve the mass,momentum and species conservation equations of the model.The spatial distributions of oxygen and methane was obtained by calculations and the drainage results of different drill-hole positions were compared.The results show that,from top to bottom,methane dilution by oxygen weakens gradually from the intake to the return side,and methane tends to float;methane and oxygen distribute horizontally.The high-level crossing holes contribute to better methane drainage and a greater level of control.Around these holes,the methane density decreases dramatically and a "half circle"distribution is formed.The methane density decreases on the whole,but a proportion of the methane moves back to deep into the goaf.The research findings provide theoretical grounds for methane drainage.
基金supported by the National Natural Science Foundation of China (Nos.51304072,51574112 and 51404100)the Excellent Youth Foundation of Henan Scientific Committee (No.164100510013)+2 种基金the Key Scientific Research Project of Colleges and Universities of Henan Province (No.15A440010)the Chinese Ministry of Education Science and Technology Research Project (No.213022A)the Doctoral Foundation of Henan Polytechnic University (No.B2013-007)
文摘A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.
基金Supported by the Basic Research Program of National Natural Science Foundation of China(50834005)
文摘According to the specific geological condition, analyzed the stress distribution of the overlying strata, the displacement of pressure released seam, thickness variation and the distribution of plastic zones by FLAG3D software to simulate mining of the long-distance lower protective seam. The research results show that the distribution of vertical stress appears as a "Double-hump" within the pressure-relief range of the protected coal seam and the swelling deformation curve of coal bodies takes an "M" shape. The swelling is divided into initial swelling, swelling increase and swelling compression stability. The maximum swelling ratio of the pressure released seam is 1.84%, protection angle of the lower protective coal seam along the strike direction is about 55°, protection angle below the dip direction is about 50°, protection angle above the dip direction is about 55°, and the coal seam compression zone resembles a "U" shape.
基金Funded by the Major State Basic Research Development Program of China(No.2005CB221503)the Key Program of the Natural Science Foundation of China(No.70533050,50904068 and 50674089)
文摘To ensure the mining safety of working face in the protective seam and meanwhile extract pressure-relief gas of the lower protected seam and eliminate its outburst risk,the present study researched into fracture development of floor coal-rock mass of the protective seam and migration rule of pressure-relief gas from a protected seam so as to obtain an effective pressure- relief gas extraction method.The results show that after the upper protective seam was mined,mining-induced fracturing floor coal-rock mas...
基金Supported by Ministry of Education Doctoral Foundation (20070460001)Natural Science Foundation of Henan Province (0623021400)
文摘Based on simulated material scale modeling and numerical simulation, the protective seam mining method was conducted at one coal mine. After extracting the No.15seam, the overlying strata movement and the deformation of the No.9-10 protected seamwere studied. The experiment results show that it is feasible to destress the protectedseams with large interburden thickness. When the face had advanced 200 m from thesetup room, the No.9-10 seam was fully destressed, resulting in easy gas drainage in thedestressed zone. Recommendations on mining sequence of multiple seams mining in thesame coal areas were made.
基金This paper was supported by the Natural Science Foundation of Jiangsu Higher Education Institutions(No.20KJB440002)the National Natural Science Foundation of China(Project Nos.51804129,51808246 and 51904112)+5 种基金China Postdoctoral Science Foundation(No.2020M671301)the Postdoctoral Science Foundation of Jiangsu Province(Nos.2019K139 and 2019Z107)the Huai’an Science and Technology Plan project(No.HAB201836)the Industry Education Research Cooperation Projects in Jiangsu Province(No.BY2020007)Undergraduate Innovation and Entrepreneurship Training Program(No.202011049111XJ)the Foundation of Huaiyin Institute of Technology(No.Z301B20530).
文摘Extraction of a protective coal seam (PVCS)-below or above a coal seam to be mined with the potential of coal andgas outburst risk-plays an important role not only in decreasing the stress field in the surrounding rock mass but alsoin increasing the gas desorption capacity and gas flow permeability in the protected coal seam (PTCS). The PVCSis mined to guarantee the safe mining of the PTCS. This study has numerically evaluated the stress redistributioneffects using FLAC3D model for a longwall face in Shanxi Province. The effects of mining depth, mining height andinter-burden rock mass properties were evaluated using the stress relief angle and stress relief coefficient. Verticalstress distribution, stress relief angle and stress relief coefficient in the PTCS were analyzed as the face advancedin the PVCS. The results showed that the stress relief achieved in different locations of the PTCS varied as the faceadvanced. Sensitivity analyses on the pertinent variables indicate that the stress relief in the PTCS is affected mostby the mining depth followed by the inter-burden lithology and the mining height. Furthermore, the elastic moduliof different layers within the inter-burden rock mass are more important than their uniaxial compressive strength(UCS) and Poisson’s ratio. These observations can guide gas drainage borehole design to minimize the accidentsof coal and gas outbursts.
基金supported by the Qing Lan Project Foundation of Jiangsu Province in 2014,Foundation for Distinguished professor of Jiangsu Province in 2015,Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.51421003)Project funded by China Postdoctoral Science Foundation(2016M601915)National Key Basic Research Program of China(No.2013CB227905)
文摘Aiming to address the following major engineering issues faced by the Pingdingshan No. 12 mine:(1) difficulty in implementing auxiliary lifting because of its depth(i.e., beyond 1000 m);(2) highly gassy main coal seam with low permeability;(3) unstable overlying coal seam without suitable conditions for implementing conventional mining techniques for protective coal seam; and(4) predominant reliance on ‘‘under three" coal resources to ensure production output. This study proposes an integrated, closed-cycle mining-dressing-gas draining-backfilling-mining(MDGBM) technique. The proposed approach involves the mining of protective coal seam, underground dressing of coal and gangue(UDCG), pressure relief and gas drainage before extraction, and backfilling and mining of the protected coal seam. A system for draining gas and mining the protective seam in the rock stratum is designed and implemented based on the geological conditions. This system helps in realizing pressure relief and gas drainage from the protective seam before extraction. Accordingly, another system, which is connected to the existing production system, is established for the UDCG based on the dense medium-shallow trough process. The mixed mining workface is designed to accommodate both solid backfill and conventional fully mechanized coal mining, thereby facilitating coal mining, USCG, and backfilling. The results show that: The mixed mining workface length for the Ji15-31010 protected seam was 220 m with coal production capacity 1.2 million tons per year, while the backfill capacity of gangue was 0.5 million tons per year. The gas pressure decreased from 1.78 to 0.35 MPa, and the total amount of safely mined coal was 1.34 million tons. The process of simultaneously exploiting coal and draining gas was found to be safe, efficient, and green.This process also yielded significant economic benefits.
基金the Major Programs of the National Basic Research Program of China (No.2005CB221503)the National Natural Science Foundation of China (Nos. 70533050 and 50674089) for their support of this project
文摘For a study of the movement and deformation of coal-rock mass and low protected seams below a stope,as well as for fracture developments and rules of evolution of permeability,we designed a plane strain model test stand to carry out model tests of similar materials in order to improve the effect of gas drainage from low protected seams and to measure the movement and deformation of coal-rock mass using a method of non-contact close-range photogrammetry.Our results show that 1) using paraffin melting to take the place of coal seam mining can satisfy the mining conditions of a protective seam;2) coal-rock mass under goafs has an upward movement after the protective seam has been mined,causing floor heaving;3) low protected seams become swollen and deformed,providing a good pressure-relief effect and causing the coal-rock mass under both sides of coal pillars to become deformed by compression and 4) the evolution of permeability of low protected seams follows the way of initial values→a slight decrease→a great increase→stability→final decrease.Simultaneously,the coefficient of air permeability increased at a decreasing rate with an increase in interlayer spacing.