The leaves of Bt (Bacillus thuringiensis) transgenic poplar (Populus nigra L.) and CpTI (Cowpea trypsin inhibitor) transgenic poplar ((P. tomentosa×P. bolleana)×P. Tomentosa) were taken to feed the 4th-5th-i...The leaves of Bt (Bacillus thuringiensis) transgenic poplar (Populus nigra L.) and CpTI (Cowpea trypsin inhibitor) transgenic poplar ((P. tomentosa×P. bolleana)×P. Tomentosa) were taken to feed the 4th-5th-instar larvae of American white moth (Hyphantria cunea (Drury)) for determination of the activities of the protective enzyme system inside larvae’s body. The physiological and biochemical effects of the transgenic poplars on the larvae were studied. The results showed that the two kinds of transgenic poplars had similar effects on the protective enzyme system in the midgut of larvae. The activities of superoxide dismutase, catalase, and peroxidase in midgut of the larvae increased gradually, reached the highest value at a certain time, and then decreased suddenly. For the larvae that were fed with the leaves of Bt transgenic poplar, the peak value of superoxide dismutase and catalase presented at the time of 24-h feeding, while the peak of peroxidase took place at the time of 12-h feeding. The activities of these protective enzymes for the larvae that were fed with leaves of CpTI transgenic poplar peaked 12 h later than that of those fed with leaves of Bt transgenic poplar. The comparison of activities of the protective enzymes was also carried out between the larvae with different levels of intoxication. It was found that the activities of protective enzyme of the seriously intoxicant larvae were higher than that of the lightly intoxicant larvae. This difference was more obvious in the group treated with CpTI transgenic poplar.展开更多
[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective o...[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective of the current study was to reveal the effects of high temperature incubation on the activities of some protective enzymes in M. tanajoa at different growth stages. The results would contribute to the understanding of the adaptable distribution of M. tanajoa after its invasion into China, the mechanisms in its invasion, diffusion and ecological adaptation, and the monitor- ing, early warning and effective prevention of its damage. [Method] Six protective enzymes, Le. polyphenol oxidase (PPO), peroxidase (POD), ascorbate oxidase (AsA- POD), catalase (CAT), superoxide dismutase (SOD) and esterase (EST), were cho- sen to study their activities after the mites at different growth stages were incubated at a extremely high temperature of 42 ~C for a certain period of time up to 24 h. The activities were measured by spectrophotometric endpoint assay method. [Results] Enzyme activities in M. tanajoa were affected by the high temperature incubation. However, differences in enzyme activity changes were found among different protec- tive enzymes and among different growth stages of M. tanajoa. Activities of PPO, POD, AsA-POD and CAT were significantly increased in the larval mites and female adult mites of M. tanajoa. CAT activity was significantly decreased in protonymph and deutonymph of M. tanajoa. Activities of PPO, POD and AsA-POD in protonymph and deutonymph showed no obvious difference from the control. [Conclusion] The activity changes of some protective enzymes in M. tanajoa following high-temperature treatment are part of its anti-stress reaction mechanism. In mite protonymph and deutonymph, activities of PPO, POD and AsA-POD are similar to the untreated con- trol which may be associated with the thermostability of M. tanajoa. It is concluded that, the long-time stress of extreme temperature may result in the increase of the thermostability of mite individuals, the enhancement of the population thermal stability and subsequently lead to rapid expansion of the population.展开更多
[Objective] The aim was to explore physiological mechanism effects in growth promotion by ethametsulfuron of lower concentration through research on content variations of protective enzymes and endogenous hormones by ...[Objective] The aim was to explore physiological mechanism effects in growth promotion by ethametsulfuron of lower concentration through research on content variations of protective enzymes and endogenous hormones by ethametsulfuron of low concentration. [Method] Rice of different leaf ages were treated in ethametsulfuron of two concentrations through soil culture. Leaves of rice were col- lected after 15 d. POD activity, PPO activity, and contents of GA, ZR, and ABA were measured by guaiacol-hydrogen peroxide method, catechol method, and ELISA method, respectively. [Result] After treatment by ethametsulfuron at 2 μg/kg, activity of PPO was greatly enhanced, of POD was a little lower than that of control group; contents of GA and ZR increased a lot and of ABA decreased much; GA/ABA val- ues were higher than that of control group. In contrast, with treatment of ethamet- sulfuron at 20 μg/kg, activity of POD was greatly increased, of PPO was a little low- er than that of control group; contents of GA, ZR increased a lot and of ABA was greatly decreased; ratio of GA and ABA was smaller than that of control group. Among treated leaves during the period when the seventh leaf grew, three hormones contents were so close to that of control group. [Conclusion] If rice was tested with ethametsulfuron of 2 μg/kg, value of GA/ABA in leaves was higher than that of con- trol group, for which rice growth would be promoted. When the concentration was 20 μg/kg, ratio of GA and ABA was smaller than that of control group, for which, rice growth would be inhibited, and during the seventh leaf growing, ethametsul- furon's effect on rice growth was weaker than that of term before the fourth one growing.展开更多
The effects of boron deficiency on the membrane permeability, the lipid peroxidation of membrane, the activities of the protective enzymes and the accumulation of polyamines in the roots of rape ( Brassica napus L. ...The effects of boron deficiency on the membrane permeability, the lipid peroxidation of membrane, the activities of the protective enzymes and the accumulation of polyamines in the roots of rape ( Brassica napus L. cv Zhongyou 821) plants were examined using solution culture experiment. Compared to the 20 mmol B m -3 treatment, boron deficient treatment (2 mmol B m -3 ) decreased root dry weight and increased the rate of solute leakage and malondialdehyde (MDA) concentration in the roots of rape. Similar patterns of change were observed in the level of lipid peroxidation (MDA concentration) and the rate of solute leakage under boron deficiency. Results suggested that a significant alteration of membrane composition had occurred under B deficiency. The concentration of putrescine and the ratio of putrescine to spermidine + spermine in the roots of rape increased significantly, and the activities of superoxide dismutase and catalase decreased in the roots of rape during B deficiency. But peroxidase activity in root of B deficient plant was higher than that of control plant.展开更多
Two phenolic acids P-hydroxy benzoic acid and cinnamic acid were designated as four concentrations (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) to investigate the effects of phenoic acids on the growth and the activities...Two phenolic acids P-hydroxy benzoic acid and cinnamic acid were designated as four concentrations (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) to investigate the effects of phenoic acids on the growth and the activities of membrane protective enzymes of cucumber seedlings. The results showed that both phenolic acids inhibited the seedlings growth. The inhibitory effects were increased with the concentration of phenolic acids increasing and the time of treatment prolonging. Seedlings treated with A150 (P-hydroxy benzoic acid, 150 μmol/L), B50 (cinnamic acid, 50 μmol/L), B100 (cinnamic acid, 100 μmol/L), B150 (cinnamic acid, 150 μmol/L) showed significantly shorter in plant height , smaller in leaf area. and lighter in fresh weight. The inhibitory effect of cinnamic acid was comparatively stronger than that of P-hydroxy benzoic acid. For protective enzymes system, compared to control , the POD activity increased at all concentrations of P-hydroxy benzoic acid during the treatment but increased at first then decreased before increased again at last at all concentrations of cinnamic acid .In the case of CAT, its activity increased at first, then decreased, and increased again at lower concentrations of phenolic acids. However, at higher concentrations the activities decreased at first, then increased a little, decreased continuously at last. In addition, the treatments of phenolic acids led to an increase then a decreaseof SOD activity and an increase of MDA content in the seedlings. All above indicated the accumulating of free radicalsand destruction of protective enzymes at higher concentrations of phenolic acids.展开更多
Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous...Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous vitamin E on the activities of SOD, POD and free proline, and the MDA contents under drought stress were examined so as to ascertain the mechanism of Leymus chinensis resistance to drought stress and explore the possible preventive measures. The results indicate that the activities of SOD and POD decreased but the free proline and MDA contents increased as drought stress was accentuated, showing an enhancement of oxidative stress that may cause a decline in membrane stabilization. However, the activities of SOD and POD and the free proline content increased, whereas the MDA content reduced in Leymus chinensis pretreated with vitamin E in comparison with that of the control. This indicates that exogenous vitamin E enhanced the antioxidation of Leymus chinensis seedlings. It suggests that cytomembrane can be protected from damage by increasing the free proline content and the activities of SOD and POD that result in enhancing the drought resistance of Leymus chinensis seedlings.展开更多
AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant...AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant enzyme activity. METHODS: Sixty Sprague-Dawley male rats were randomly divided into sham, I/R, C + I/R groups. The model of reduced-size liver warm ischemia and reperfusion was used. Curcumin (50 mg/kg) was administered by injection through a branch of superior mesenteric vein at 30 min before ischemia in C + I/R group. Five rats were used to investigate the survival during 1 wk after operation in each group. Blood samples and liver tissues were obtained in the remaining animals after 3, 12, and 24 h of reperfusion to assess serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver tissue NO2- + NO3-, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), nitricoxide synthase (NOS) and myeloperoxidase (MPO) activity, HspT0 expression and apoptosis ratio. RESULTS: Compared with I/R group, curcumin pretreatment group showed less ischemia/reperfusioninduced injury. CAT and SOD activity and Hsp70 expression increased significantly. A higher rate of apoptosis was observed in I/R group than in C + I/R group, and a significant increase of MDA, NO2^- + NO3^- and MPO level in liver tissues and serum transaminase concentration was also observed in I/R group compared to C + I/R group. Curcumin also decreased the activity of inducible NO synthase (iNOS) in liver after reperfusion,but had no effect on the level of endothelial NO synthase (eNOS) after reperfusion in liver. The 7 d survival rate was significantly higher in C + I/R group than in I/R group. CONCLUSION: Curcumin has protective effects against hepatic I/R injury. Its mechanism might be related to the overexpression of Hsp70 and antioxidant enzymes.展开更多
The ameliorative effect of external Ca^2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with ...The ameliorative effect of external Ca^2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with or without 10 mol L^-1 CaCl2, 150 mmol L^-1 NaCl, and/or 5 mmol L^-1 ethylene-bis(oxyethylenenitrilo)-tetraacetic acid (EGTA) for five days. Exposure to NaC1 (150 mmol L^-1) decreased growth, leaf chlorophyll content, and photosynthetic rate of Jerusalem artichoke seedlings. NaC1 treatment showed 59% and 37% higher lipid peroxidation and electrolyte leakage, respectively, than the control. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased by NaCl, indicating an impeded antioxidant defense mechanism of Jerusalem artichoke grown under salt stress. Addition of 10 mmol L^-1 CaCl2 to the salt solutions significantly decreased the damaging effect of NaC1 on growth and chlorophyll content and simultaneously restored the rate of photosynthesis almost to the level of the control. Ca^2+ addition decreased the leaf malondialdehyde (MDA) content and electrolyte leakage from NaCl-treated seedlings by 47% and 24%, respectively, and significantly improved the activities of SOD, POD, and CAT in NaCl-treated plants. Addition of EGTA, a specific chelator of Ca2+, decreased the growth, chlorophyll content, and photosynthesis, and increased level of MDA and electrolyte leakage from NaCl-treated plants and from the control plants. EGTA addition to the growth medium also repressed the activities of SOD, POD, and CAT in NaCl-treated and control seedlings. External Ca2+ might protect Jerusalem artichoke against NaC1 stress by up-regulating the activities of antioxidant enzymes and thereby decreasing the oxidative stress.展开更多
Eleven isolates of Beauveria spp., including B. bassiana(Bb062) newly isolated from Helicoverpa assulta, and other seven B. bassiana isolates and three B. brongniartii isolates that were originally isolated from diffe...Eleven isolates of Beauveria spp., including B. bassiana(Bb062) newly isolated from Helicoverpa assulta, and other seven B. bassiana isolates and three B. brongniartii isolates that were originally isolated from different geographic origins and various hosts, were tested against the 3^(rd) instar larvae of H. assulta. The protective enzyme activity in the 3^(rd) larvae of H. assulta infected by highly virulent isolate was also assayed. The results showed that the isolate Bb062 had the highest virulence to the 3^(rd) instar larvae among eleven isolates of Beauveria spp., with a corrected mortality reaching 91.07% within 10 d post treatment, and the LT_(50) was 4.67 d. After inoculated with three concentrations(1.0 ×10~6, 1.0 ×10~7 and 1.0×10~8 conidia/mL) of Bb062 conidial suspension, the accumulative mortality of H. assulta larvae increased with the increase of concentration and observation time, and the LC_(50) was 1.82×10~7 conidia/mL. Activities of superoxide dismutase(SOD), peroxidase(POD) and catalase(CAT) in H. assulta larvae first increased rapidly then dropped sharply within 72 h. Bb062 showed high virulence to H. assulta and could inhibit activities of protective enzymes. Therefore, it will be a promising biocontrol agent against H. assulta.展开更多
As one of the most severe environmental stresses, freezing stress can determine native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-...As one of the most severe environmental stresses, freezing stress can determine native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-thawing cycle, and oxidative stress caused by uncontrollable production of harmful reactive oxygen species (ROS) are partially contributed to causing the injury. Plants in temperate regions have evolved a unique but effective metabolism of protecting themselves called cold acclimation. Cold-acclimating plants undergo a complex but orchestrated metabolic process to increase cold hardness triggered by exposure to low temperature and shortened photoperiod and achieve the maximum freezing tolerance by a concerted regulation and expression of a number of cold responsive genes. A complicated enzymatic system have been evolved in plants to scavenge the ROS to protect themselves from oxidative stress, therefore, cold-acclimating plants are expected to increase the de novo synthesis of the genes of antioxidant genes. Indeed, many antioxidant genes increase the expression levels in response to low temperature. Furthermore, the higher expression of many antioxidant enzymes are positively correlated to inducing higher tolerance levels against freezing. All the information summarized here can be applied for developing crop and horticultural plants to have more freezing tolerance for higher production with better quality. There have been extensive studies on the activities of antioxidant enzymes and the gene regulation, however, more researches will be required in near future to elucidate the most effective antioxidant enzymes to induce highest freezing tolerance in a crop plant in a transformation process or a breeding program.展开更多
AIM: To investigate the effects of Nigella sativa 1 (NS) and Urtica dioica 1 (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar ...AIM: To investigate the effects of Nigella sativa 1 (NS) and Urtica dioica 1 (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals. All groups received CCl4 (0.8 mL/kg of body weight, sc, twice a week for 60 d). In addition, B, C and D groups also received daily i.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand, received only 2 mL/kg normal saline solution for 60 d. Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment. RESULTS: The CCl4 treatment for 60 d increased the lipid peroxidation and liver enzymes, and also decreased the antioxidant enzyme levels. NS or UD treatment (alone or combination) for 60 d decreased the elevated lipid peroxidation and liver enzyme levels and also increased the reduced antioxidant enzyme levels. The weight of rats decreased in group A, and increased in groups B, C and D. CONCLUSION: NS and UD decrease the lipid peroxidation and liver enzymes, and increase the antioxidant defense system activity in the CCl4-treated rats.展开更多
ObjectiveTo investigate the hepatoprotective efficacy of cranberry extract (CBE) against carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic injury using in-vivo animal model.MethodsThe hepatoprotective...ObjectiveTo investigate the hepatoprotective efficacy of cranberry extract (CBE) against carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic injury using in-vivo animal model.MethodsThe hepatoprotective efficacy of CBE (200 and 400 mg/kg) was investigated against CCl<sub>4</sub> (4 mL/kg)-induced hepatotoxicity, elevated liver enzymes [ALT (alanine aminotransferase), AST (aspartate aminotransferase), and alkaline phosphatase (ALP)], and total protein (TP) contents in the serum. Moreover, CBE-aided antioxidant defense against hepatotoxic insult of CCl<sub>4</sub> was measured by evaluating a number of anti-oxidative biomarkers including reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in the serum by using spectrophotometric analyses.ResultsResults showed that the exposure of experimental animals to CCl<sub>4</sub> did induce significant hepatotoxicity compared to the non-induced (untreated) group. The oral administration of CBE demonstrated a significant dose-dependent alleviation in the liver enzymes (AST, ALT, and ALP), increased antioxidant defense (GSH, SOD, and CAT), and reduced MDA levels in the serum of treated animals compared to the animals without treatment. The resulting data showed that the administration of CBE decreased the serum levels of ALT, AST, and ALP compared to the CCl<sub>4</sub>-induced group.ConclusionsThe resulting data evidenced that CBE exhibits promising hepatoprotective potential against the chemical induced hepatotoxicity, maintains homeostasis in liver enzymes, and can provide significant antioxidant defense against free radicals-induced oxidative stress.展开更多
[ Objective ] This study aimed to investigate the effect of superoxide dismutase mimics ( SODM ) on protective enzyme activities of rice during filling pe- riod. [ Method] Hybrid rice and conventional rice varieties...[ Objective ] This study aimed to investigate the effect of superoxide dismutase mimics ( SODM ) on protective enzyme activities of rice during filling pe- riod. [ Method] Hybrid rice and conventional rice varieties were used as experimental materials and sprayed with SODM. Activities of protective enzymes and con- tents of ASA, MDA, H20~ and 02- in rice leaves were determined. [ Result] SODM can significantly increase SOD, POD and CAT activities in leaves of rice dur- ing titling period, maintain the MDA, H202 and 02- contents at retatively low levels, and reduce rice peroxidation. [ Conclusion] SODM enhances the activities of antioxidant protective enzymes in plants and the ability to scavenge reactive oxygen free radicals, thereby delaying the senescence of rice and enhancing the ability of photosynthesis in the middle to late tilling period, which is conducive to improve the yield and quality of rice.展开更多
[Objective] This study aimed to investigate the effects of space mutation on the activities of protective enzymes in different strains of Cichorium intybus L. and provide theoretical basis for screening drought-tolera...[Objective] This study aimed to investigate the effects of space mutation on the activities of protective enzymes in different strains of Cichorium intybus L. and provide theoretical basis for screening drought-tolerant plants in southern karst area. [Method] C. intybus seeds were sent into outer space by 'Shijian No.8' seed- breeding satellite. The new strains and original variety of C. intybus L. were used as experimental materials to determine the activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA) content. [Result] The results showed that MDA content in PA-82, Puna chicory and PA-43 increased gradually with the increase of water stress duration, which was enhanced by 0.575, 0.72 and 0.844 μmol/g respectively at 12 days. In addition, the activities of SOD, POD and CAT increased rapidly; at 9 days, the activities of SOD in PA-82, Puna chicory and PA-43 were enhanced by 878.9, 809.2 and 711.1 U/g, with the increas- ing range of 139.1%, 136.7% and 121.1%, respectively; the activities of POD were enhanced by 4 397, 3 754 and 2 767 U/(g ·min), with the increasing range of 265.84%, 257.65% and 204.06%, respectively; the activities of CAT were enhanced by 402.1, 277.1 and 170.9 KU/L, with the increasing range of 73.08%, 39.69% and 26.20%, respectively; subsequently, the activities of these three protective enzymes were reduced significantly; at 12 days, the activities of SOD in PA-82, Puna chicory and PA-43 were reduced to 1206.5, 1144.7 and 1108.6 U/g, respectively; the activi- ties of POD were reduced to 3 145, 2 876 and 2 753 U/(g·min) , respectively; the activities of CAT were reduced to 587.2, 698.1 and 584.1 KU/L, respectively. [Con- clusion] According to the results of comprehensive evaluation, drought resistance in three C. intybus varieties exhibited a descending order of PA-82 〉 Puna chicory 〉 PA-43.展开更多
Broccoli sprout (BS) supplements have been marketed for over a decade for the promising health beneficial effects of sulforaphane (SFN), which induces Nrf2 signaling and downstream chemoprotective genes, including pha...Broccoli sprout (BS) supplements have been marketed for over a decade for the promising health beneficial effects of sulforaphane (SFN), which induces Nrf2 signaling and downstream chemoprotective genes, including phase 2 enzymes. Most commercially available BS supplements encapsulate heat-processed BS containing glucoraphanin (GR), which is hydrolyzed to SFN by the intestinal microbiota. However, the absorption behavior of SFN following the intake of such BS supplements is still unclear. Additionally, the GR dose (around 30 mg) recommended by many manufacturers of BS supplements is relatively lower than the effective dose determined in previous intervention studies. The aims of this study were to assess the effects of a single administration of a typical BS supplement containing lower doses of GR (30 or 60 mg from 3 or 6 capsules, respectively) on SFN absorption, and also to assess the serum activities of phase 2 enzymes as possible surrogate markers of the beneficial effects of SFN. Urinary excreted isothiocyanates and dithiocarbamates showed that the SFN absorption following administration of BS supplement was prolonged and varied among individuals, which conforms to the well-known characteristics of intestinal microbiota-mediated SFN absorption. The amount of SFN absorbed increased dose-dependently but not linear fashion (9.27 μmol and 13.5 μmol for 3 and 6 capsules, respectively). There was no significant difference in SFN bioavailability and the number of capsules consumed. Serum activities of phase 2 enzymes glutathione S-transferase (GST) and NAD(P)H: quinone oxidoreductase 1 (NQO1), which have been reported to display “chemoprotected states” in organs such as the liver, were dose-dependently and synchronously elevated (p < 0.05) following BS supplement intake. This suggests that a low dose of GR (30 mg) exerts chemoprotective effects in humans. In conclusion, our findings will be useful in future clinical studies investigating the chemoprotective effects of SFN, and for the development of BS supplement products.展开更多
Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly...Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li.展开更多
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio...The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.展开更多
To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb)....To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.展开更多
Parkinson’s disease:Parkinson’s disease(PD) is the second most prevalent neurodegenerative disease,after Alzheimer’s disease,affecting 1%of the general population over the age of 65years.According to data from the ...Parkinson’s disease:Parkinson’s disease(PD) is the second most prevalent neurodegenerative disease,after Alzheimer’s disease,affecting 1%of the general population over the age of 65years.According to data from the World Health Organization(WHO),its prevalence has doubled in the past 25 years.In 2019,global estimates indicated over 8.5 million individuals with PD and it is suggested that PD caused 329000 deaths,an increase of over 100% since 2000(WHO,2022).展开更多
Ambroxol hydrochloride(2-amino-3,5-dibromo-N-methylbenzylamine hydrochloride)has been used as a mucolytic agent in the treatment of respiratory diseases since the late 1970s.Its effects on mucus membranes such as mucu...Ambroxol hydrochloride(2-amino-3,5-dibromo-N-methylbenzylamine hydrochloride)has been used as a mucolytic agent in the treatment of respiratory diseases since the late 1970s.Its effects on mucus membranes such as mucus disruption,increased mucus production,and low toxicity profile were addressed in its original German patent in 1966.These first described properties have kept Ambroxol available worldwide and over the counter in the pharmaceutical market to this day.展开更多
文摘The leaves of Bt (Bacillus thuringiensis) transgenic poplar (Populus nigra L.) and CpTI (Cowpea trypsin inhibitor) transgenic poplar ((P. tomentosa×P. bolleana)×P. Tomentosa) were taken to feed the 4th-5th-instar larvae of American white moth (Hyphantria cunea (Drury)) for determination of the activities of the protective enzyme system inside larvae’s body. The physiological and biochemical effects of the transgenic poplars on the larvae were studied. The results showed that the two kinds of transgenic poplars had similar effects on the protective enzyme system in the midgut of larvae. The activities of superoxide dismutase, catalase, and peroxidase in midgut of the larvae increased gradually, reached the highest value at a certain time, and then decreased suddenly. For the larvae that were fed with the leaves of Bt transgenic poplar, the peak value of superoxide dismutase and catalase presented at the time of 24-h feeding, while the peak of peroxidase took place at the time of 12-h feeding. The activities of these protective enzymes for the larvae that were fed with leaves of CpTI transgenic poplar peaked 12 h later than that of those fed with leaves of Bt transgenic poplar. The comparison of activities of the protective enzymes was also carried out between the larvae with different levels of intoxication. It was found that the activities of protective enzyme of the seriously intoxicant larvae were higher than that of the lightly intoxicant larvae. This difference was more obvious in the group treated with CpTI transgenic poplar.
基金Supported by Special Fund for Cassava Technology System Fund (CARS-12-hncq)the Central-level Public Welfare Research Institutes for Basic R & D Operations (No.2011h-zs1J014,No.2009hzs1J013)+1 种基金Agricultural Public Welfare Industry-specific (200903034-5)Science and Technology Program Project of Hainan Province (ZDXM20100022,ZDXM20110032)~~
文摘[Objective] Mononychellus tanajoa is a mite speices recently invaded into China in 2008. Temperature is one of the most important ecological factors affecting the growth and reproduction of M. tanajoa. The objective of the current study was to reveal the effects of high temperature incubation on the activities of some protective enzymes in M. tanajoa at different growth stages. The results would contribute to the understanding of the adaptable distribution of M. tanajoa after its invasion into China, the mechanisms in its invasion, diffusion and ecological adaptation, and the monitor- ing, early warning and effective prevention of its damage. [Method] Six protective enzymes, Le. polyphenol oxidase (PPO), peroxidase (POD), ascorbate oxidase (AsA- POD), catalase (CAT), superoxide dismutase (SOD) and esterase (EST), were cho- sen to study their activities after the mites at different growth stages were incubated at a extremely high temperature of 42 ~C for a certain period of time up to 24 h. The activities were measured by spectrophotometric endpoint assay method. [Results] Enzyme activities in M. tanajoa were affected by the high temperature incubation. However, differences in enzyme activity changes were found among different protec- tive enzymes and among different growth stages of M. tanajoa. Activities of PPO, POD, AsA-POD and CAT were significantly increased in the larval mites and female adult mites of M. tanajoa. CAT activity was significantly decreased in protonymph and deutonymph of M. tanajoa. Activities of PPO, POD and AsA-POD in protonymph and deutonymph showed no obvious difference from the control. [Conclusion] The activity changes of some protective enzymes in M. tanajoa following high-temperature treatment are part of its anti-stress reaction mechanism. In mite protonymph and deutonymph, activities of PPO, POD and AsA-POD are similar to the untreated con- trol which may be associated with the thermostability of M. tanajoa. It is concluded that, the long-time stress of extreme temperature may result in the increase of the thermostability of mite individuals, the enhancement of the population thermal stability and subsequently lead to rapid expansion of the population.
基金Supported by Natural Science Foundation of Jiangsu Education Department(07KJB210137)~~
文摘[Objective] The aim was to explore physiological mechanism effects in growth promotion by ethametsulfuron of lower concentration through research on content variations of protective enzymes and endogenous hormones by ethametsulfuron of low concentration. [Method] Rice of different leaf ages were treated in ethametsulfuron of two concentrations through soil culture. Leaves of rice were col- lected after 15 d. POD activity, PPO activity, and contents of GA, ZR, and ABA were measured by guaiacol-hydrogen peroxide method, catechol method, and ELISA method, respectively. [Result] After treatment by ethametsulfuron at 2 μg/kg, activity of PPO was greatly enhanced, of POD was a little lower than that of control group; contents of GA and ZR increased a lot and of ABA decreased much; GA/ABA val- ues were higher than that of control group. In contrast, with treatment of ethamet- sulfuron at 20 μg/kg, activity of POD was greatly increased, of PPO was a little low- er than that of control group; contents of GA, ZR increased a lot and of ABA was greatly decreased; ratio of GA and ABA was smaller than that of control group. Among treated leaves during the period when the seventh leaf grew, three hormones contents were so close to that of control group. [Conclusion] If rice was tested with ethametsulfuron of 2 μg/kg, value of GA/ABA in leaves was higher than that of con- trol group, for which rice growth would be promoted. When the concentration was 20 μg/kg, ratio of GA and ABA was smaller than that of control group, for which, rice growth would be inhibited, and during the seventh leaf growing, ethametsul- furon's effect on rice growth was weaker than that of term before the fourth one growing.
文摘The effects of boron deficiency on the membrane permeability, the lipid peroxidation of membrane, the activities of the protective enzymes and the accumulation of polyamines in the roots of rape ( Brassica napus L. cv Zhongyou 821) plants were examined using solution culture experiment. Compared to the 20 mmol B m -3 treatment, boron deficient treatment (2 mmol B m -3 ) decreased root dry weight and increased the rate of solute leakage and malondialdehyde (MDA) concentration in the roots of rape. Similar patterns of change were observed in the level of lipid peroxidation (MDA concentration) and the rate of solute leakage under boron deficiency. Results suggested that a significant alteration of membrane composition had occurred under B deficiency. The concentration of putrescine and the ratio of putrescine to spermidine + spermine in the roots of rape increased significantly, and the activities of superoxide dismutase and catalase decreased in the roots of rape during B deficiency. But peroxidase activity in root of B deficient plant was higher than that of control plant.
文摘Two phenolic acids P-hydroxy benzoic acid and cinnamic acid were designated as four concentrations (0, 50 μmol/L, 100 μmol/L, 150 μmol/L) to investigate the effects of phenoic acids on the growth and the activities of membrane protective enzymes of cucumber seedlings. The results showed that both phenolic acids inhibited the seedlings growth. The inhibitory effects were increased with the concentration of phenolic acids increasing and the time of treatment prolonging. Seedlings treated with A150 (P-hydroxy benzoic acid, 150 μmol/L), B50 (cinnamic acid, 50 μmol/L), B100 (cinnamic acid, 100 μmol/L), B150 (cinnamic acid, 150 μmol/L) showed significantly shorter in plant height , smaller in leaf area. and lighter in fresh weight. The inhibitory effect of cinnamic acid was comparatively stronger than that of P-hydroxy benzoic acid. For protective enzymes system, compared to control , the POD activity increased at all concentrations of P-hydroxy benzoic acid during the treatment but increased at first then decreased before increased again at last at all concentrations of cinnamic acid .In the case of CAT, its activity increased at first, then decreased, and increased again at lower concentrations of phenolic acids. However, at higher concentrations the activities decreased at first, then increased a little, decreased continuously at last. In addition, the treatments of phenolic acids led to an increase then a decreaseof SOD activity and an increase of MDA content in the seedlings. All above indicated the accumulating of free radicalsand destruction of protective enzymes at higher concentrations of phenolic acids.
文摘Leymus chinensis seedlings were treated with 0.05--10 mmol/L vitamin E under osmotic stress in the presence of polyethylene glycol(PEG) as the stress reagent. The effects of the different concentrations of exogenous vitamin E on the activities of SOD, POD and free proline, and the MDA contents under drought stress were examined so as to ascertain the mechanism of Leymus chinensis resistance to drought stress and explore the possible preventive measures. The results indicate that the activities of SOD and POD decreased but the free proline and MDA contents increased as drought stress was accentuated, showing an enhancement of oxidative stress that may cause a decline in membrane stabilization. However, the activities of SOD and POD and the free proline content increased, whereas the MDA content reduced in Leymus chinensis pretreated with vitamin E in comparison with that of the control. This indicates that exogenous vitamin E enhanced the antioxidation of Leymus chinensis seedlings. It suggests that cytomembrane can be protected from damage by increasing the free proline content and the activities of SOD and POD that result in enhancing the drought resistance of Leymus chinensis seedlings.
文摘AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant enzyme activity. METHODS: Sixty Sprague-Dawley male rats were randomly divided into sham, I/R, C + I/R groups. The model of reduced-size liver warm ischemia and reperfusion was used. Curcumin (50 mg/kg) was administered by injection through a branch of superior mesenteric vein at 30 min before ischemia in C + I/R group. Five rats were used to investigate the survival during 1 wk after operation in each group. Blood samples and liver tissues were obtained in the remaining animals after 3, 12, and 24 h of reperfusion to assess serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver tissue NO2- + NO3-, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), nitricoxide synthase (NOS) and myeloperoxidase (MPO) activity, HspT0 expression and apoptosis ratio. RESULTS: Compared with I/R group, curcumin pretreatment group showed less ischemia/reperfusioninduced injury. CAT and SOD activity and Hsp70 expression increased significantly. A higher rate of apoptosis was observed in I/R group than in C + I/R group, and a significant increase of MDA, NO2^- + NO3^- and MPO level in liver tissues and serum transaminase concentration was also observed in I/R group compared to C + I/R group. Curcumin also decreased the activity of inducible NO synthase (iNOS) in liver after reperfusion,but had no effect on the level of endothelial NO synthase (eNOS) after reperfusion in liver. The 7 d survival rate was significantly higher in C + I/R group than in I/R group. CONCLUSION: Curcumin has protective effects against hepatic I/R injury. Its mechanism might be related to the overexpression of Hsp70 and antioxidant enzymes.
基金the National High Technology Research and Development Program of China (863 Program)(No. 2003AA627040).
文摘The ameliorative effect of external Ca^2+ on Jerusalem artichoke (Helianthus tuberosus L.) under salt stress was studied through biochemical and physiological analyses of Jerusalem artichoke seedlings treated with or without 10 mol L^-1 CaCl2, 150 mmol L^-1 NaCl, and/or 5 mmol L^-1 ethylene-bis(oxyethylenenitrilo)-tetraacetic acid (EGTA) for five days. Exposure to NaC1 (150 mmol L^-1) decreased growth, leaf chlorophyll content, and photosynthetic rate of Jerusalem artichoke seedlings. NaC1 treatment showed 59% and 37% higher lipid peroxidation and electrolyte leakage, respectively, than the control. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased by NaCl, indicating an impeded antioxidant defense mechanism of Jerusalem artichoke grown under salt stress. Addition of 10 mmol L^-1 CaCl2 to the salt solutions significantly decreased the damaging effect of NaC1 on growth and chlorophyll content and simultaneously restored the rate of photosynthesis almost to the level of the control. Ca^2+ addition decreased the leaf malondialdehyde (MDA) content and electrolyte leakage from NaCl-treated seedlings by 47% and 24%, respectively, and significantly improved the activities of SOD, POD, and CAT in NaCl-treated plants. Addition of EGTA, a specific chelator of Ca2+, decreased the growth, chlorophyll content, and photosynthesis, and increased level of MDA and electrolyte leakage from NaCl-treated plants and from the control plants. EGTA addition to the growth medium also repressed the activities of SOD, POD, and CAT in NaCl-treated and control seedlings. External Ca2+ might protect Jerusalem artichoke against NaC1 stress by up-regulating the activities of antioxidant enzymes and thereby decreasing the oxidative stress.
基金Supported by General Project of Shandong Branch of China National Tobacco Corporation(KJ20170413)Major Special Project of Guiyang Branch of Guizhou Tobacco Company(2016-06)+2 种基金Natural Science Foundation of Anhui Province(1908085MC70)Key Projects of Natural Science at Higher Institutions in Anhui Province(03087060)Key Projects of China National Tobacco Corp Sichuan Company(SCYC201703&SCYC201806&SCYC2018-2)
文摘Eleven isolates of Beauveria spp., including B. bassiana(Bb062) newly isolated from Helicoverpa assulta, and other seven B. bassiana isolates and three B. brongniartii isolates that were originally isolated from different geographic origins and various hosts, were tested against the 3^(rd) instar larvae of H. assulta. The protective enzyme activity in the 3^(rd) larvae of H. assulta infected by highly virulent isolate was also assayed. The results showed that the isolate Bb062 had the highest virulence to the 3^(rd) instar larvae among eleven isolates of Beauveria spp., with a corrected mortality reaching 91.07% within 10 d post treatment, and the LT_(50) was 4.67 d. After inoculated with three concentrations(1.0 ×10~6, 1.0 ×10~7 and 1.0×10~8 conidia/mL) of Bb062 conidial suspension, the accumulative mortality of H. assulta larvae increased with the increase of concentration and observation time, and the LC_(50) was 1.82×10~7 conidia/mL. Activities of superoxide dismutase(SOD), peroxidase(POD) and catalase(CAT) in H. assulta larvae first increased rapidly then dropped sharply within 72 h. Bb062 showed high virulence to H. assulta and could inhibit activities of protective enzymes. Therefore, it will be a promising biocontrol agent against H. assulta.
文摘As one of the most severe environmental stresses, freezing stress can determine native flora in nature and severely reduce crop production. Many mechanisms have been proposed to explain the damage induced by freezing-thawing cycle, and oxidative stress caused by uncontrollable production of harmful reactive oxygen species (ROS) are partially contributed to causing the injury. Plants in temperate regions have evolved a unique but effective metabolism of protecting themselves called cold acclimation. Cold-acclimating plants undergo a complex but orchestrated metabolic process to increase cold hardness triggered by exposure to low temperature and shortened photoperiod and achieve the maximum freezing tolerance by a concerted regulation and expression of a number of cold responsive genes. A complicated enzymatic system have been evolved in plants to scavenge the ROS to protect themselves from oxidative stress, therefore, cold-acclimating plants are expected to increase the de novo synthesis of the genes of antioxidant genes. Indeed, many antioxidant genes increase the expression levels in response to low temperature. Furthermore, the higher expression of many antioxidant enzymes are positively correlated to inducing higher tolerance levels against freezing. All the information summarized here can be applied for developing crop and horticultural plants to have more freezing tolerance for higher production with better quality. There have been extensive studies on the activities of antioxidant enzymes and the gene regulation, however, more researches will be required in near future to elucidate the most effective antioxidant enzymes to induce highest freezing tolerance in a crop plant in a transformation process or a breeding program.
文摘AIM: To investigate the effects of Nigella sativa 1 (NS) and Urtica dioica 1 (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals. All groups received CCl4 (0.8 mL/kg of body weight, sc, twice a week for 60 d). In addition, B, C and D groups also received daily i.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand, received only 2 mL/kg normal saline solution for 60 d. Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment. RESULTS: The CCl4 treatment for 60 d increased the lipid peroxidation and liver enzymes, and also decreased the antioxidant enzyme levels. NS or UD treatment (alone or combination) for 60 d decreased the elevated lipid peroxidation and liver enzyme levels and also increased the reduced antioxidant enzyme levels. The weight of rats decreased in group A, and increased in groups B, C and D. CONCLUSION: NS and UD decrease the lipid peroxidation and liver enzymes, and increase the antioxidant defense system activity in the CCl4-treated rats.
基金the Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore for providing resources and financial support
文摘ObjectiveTo investigate the hepatoprotective efficacy of cranberry extract (CBE) against carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic injury using in-vivo animal model.MethodsThe hepatoprotective efficacy of CBE (200 and 400 mg/kg) was investigated against CCl<sub>4</sub> (4 mL/kg)-induced hepatotoxicity, elevated liver enzymes [ALT (alanine aminotransferase), AST (aspartate aminotransferase), and alkaline phosphatase (ALP)], and total protein (TP) contents in the serum. Moreover, CBE-aided antioxidant defense against hepatotoxic insult of CCl<sub>4</sub> was measured by evaluating a number of anti-oxidative biomarkers including reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) in the serum by using spectrophotometric analyses.ResultsResults showed that the exposure of experimental animals to CCl<sub>4</sub> did induce significant hepatotoxicity compared to the non-induced (untreated) group. The oral administration of CBE demonstrated a significant dose-dependent alleviation in the liver enzymes (AST, ALT, and ALP), increased antioxidant defense (GSH, SOD, and CAT), and reduced MDA levels in the serum of treated animals compared to the animals without treatment. The resulting data showed that the administration of CBE decreased the serum levels of ALT, AST, and ALP compared to the CCl<sub>4</sub>-induced group.ConclusionsThe resulting data evidenced that CBE exhibits promising hepatoprotective potential against the chemical induced hepatotoxicity, maintains homeostasis in liver enzymes, and can provide significant antioxidant defense against free radicals-induced oxidative stress.
基金Supported by Science and Technology Achievement Transformation Project of Daqing City(SCG2008-028)Science and Technology Achievement Transformation Fund of Heilongjiang Province(NB08B014)+1 种基金Personnel Service Enterprise Project of Ministry of Science and Technology(2009GJB20016)Scientific and Technological Achievement Promotion Project of Heilongjiang Province(TC10B1104)
文摘[ Objective ] This study aimed to investigate the effect of superoxide dismutase mimics ( SODM ) on protective enzyme activities of rice during filling pe- riod. [ Method] Hybrid rice and conventional rice varieties were used as experimental materials and sprayed with SODM. Activities of protective enzymes and con- tents of ASA, MDA, H20~ and 02- in rice leaves were determined. [ Result] SODM can significantly increase SOD, POD and CAT activities in leaves of rice dur- ing titling period, maintain the MDA, H202 and 02- contents at retatively low levels, and reduce rice peroxidation. [ Conclusion] SODM enhances the activities of antioxidant protective enzymes in plants and the ability to scavenge reactive oxygen free radicals, thereby delaying the senescence of rice and enhancing the ability of photosynthesis in the middle to late tilling period, which is conducive to improve the yield and quality of rice.
基金Supported by Science and Technology Fund of Guizhou Province(QKHJZ[2011]2165)Key Project of Agricultural Science and Technology of Guizhou Province(QKHNYZ[2009]3083,QKHNYZ[2012]3049)Special Breeding Fund of Guizhou Province(QNYZZ[2011]036)~~
文摘[Objective] This study aimed to investigate the effects of space mutation on the activities of protective enzymes in different strains of Cichorium intybus L. and provide theoretical basis for screening drought-tolerant plants in southern karst area. [Method] C. intybus seeds were sent into outer space by 'Shijian No.8' seed- breeding satellite. The new strains and original variety of C. intybus L. were used as experimental materials to determine the activities of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA) content. [Result] The results showed that MDA content in PA-82, Puna chicory and PA-43 increased gradually with the increase of water stress duration, which was enhanced by 0.575, 0.72 and 0.844 μmol/g respectively at 12 days. In addition, the activities of SOD, POD and CAT increased rapidly; at 9 days, the activities of SOD in PA-82, Puna chicory and PA-43 were enhanced by 878.9, 809.2 and 711.1 U/g, with the increas- ing range of 139.1%, 136.7% and 121.1%, respectively; the activities of POD were enhanced by 4 397, 3 754 and 2 767 U/(g ·min), with the increasing range of 265.84%, 257.65% and 204.06%, respectively; the activities of CAT were enhanced by 402.1, 277.1 and 170.9 KU/L, with the increasing range of 73.08%, 39.69% and 26.20%, respectively; subsequently, the activities of these three protective enzymes were reduced significantly; at 12 days, the activities of SOD in PA-82, Puna chicory and PA-43 were reduced to 1206.5, 1144.7 and 1108.6 U/g, respectively; the activi- ties of POD were reduced to 3 145, 2 876 and 2 753 U/(g·min) , respectively; the activities of CAT were reduced to 587.2, 698.1 and 584.1 KU/L, respectively. [Con- clusion] According to the results of comprehensive evaluation, drought resistance in three C. intybus varieties exhibited a descending order of PA-82 〉 Puna chicory 〉 PA-43.
文摘Broccoli sprout (BS) supplements have been marketed for over a decade for the promising health beneficial effects of sulforaphane (SFN), which induces Nrf2 signaling and downstream chemoprotective genes, including phase 2 enzymes. Most commercially available BS supplements encapsulate heat-processed BS containing glucoraphanin (GR), which is hydrolyzed to SFN by the intestinal microbiota. However, the absorption behavior of SFN following the intake of such BS supplements is still unclear. Additionally, the GR dose (around 30 mg) recommended by many manufacturers of BS supplements is relatively lower than the effective dose determined in previous intervention studies. The aims of this study were to assess the effects of a single administration of a typical BS supplement containing lower doses of GR (30 or 60 mg from 3 or 6 capsules, respectively) on SFN absorption, and also to assess the serum activities of phase 2 enzymes as possible surrogate markers of the beneficial effects of SFN. Urinary excreted isothiocyanates and dithiocarbamates showed that the SFN absorption following administration of BS supplement was prolonged and varied among individuals, which conforms to the well-known characteristics of intestinal microbiota-mediated SFN absorption. The amount of SFN absorbed increased dose-dependently but not linear fashion (9.27 μmol and 13.5 μmol for 3 and 6 capsules, respectively). There was no significant difference in SFN bioavailability and the number of capsules consumed. Serum activities of phase 2 enzymes glutathione S-transferase (GST) and NAD(P)H: quinone oxidoreductase 1 (NQO1), which have been reported to display “chemoprotected states” in organs such as the liver, were dose-dependently and synchronously elevated (p < 0.05) following BS supplement intake. This suggests that a low dose of GR (30 mg) exerts chemoprotective effects in humans. In conclusion, our findings will be useful in future clinical studies investigating the chemoprotective effects of SFN, and for the development of BS supplement products.
基金This work was funded by Chongqing Municipal Technology Innovation and Application Development Program(cstc2020jscx-gksb0001)Yunnan Academician(Expert)Workstation Project(202105AF150073).
文摘Fritillaria taipaiensis P.Y.Li is a widely used medicinal herb in treating pulmonary diseases.In recent years,its wild resources have become scarce,and the demand for efficient artificial cultivation has significantly increased.This article is the first to apply phosphate solubilizing bacteria isolated from the rhizosphere soil of F.taipaiensis P.Y.Li to the cultivation process of F.taipaiensis P.Y.Li.The aim is to identify suitable reference strains for the artificial cultivation and industrial development of F.taipaiensis P.Y.Li by examining the effects of various phosphate solubilizing bacteria and their combinations on photosynthesis,physiological and biochemical properties,and gene expression related to the protective enzyme system in F.taipaiensis P.Y.Li.The experiment,conducted in pots at room temperature,included a control group(CK)and groups inoculated with inorganic phosphorussolubilizing bacteria:W1(Bacillus cereus),W2(Serratia plymuthica),W12(Bacillus cereus and Serratia plymuthica),and groups inoculated with organophosphorus-solubilizing bacteria:Y1(Bacillus cereus),Y2(Bacillus cereus),Y12(Bacillus cereus and Bacillus cereus),totaling seven groups.Compared to CK,most growth indices in the bacterial addition groups showed significant differences,with W12 achieving the highest values in all indices except the leaf area index.The content of photosynthetic pigments,photosynthetic parameters,and osmoregulatory substances increased variably in each bacterial treatment group.W12 exhibited the highest content of chlorophyll a and soluble protein,while W1 had the highest free proline content.The activities of peroxidase(POD),superoxide dismutase(SOD),and catalase(CAT)in all inoculated groups were higher than in CK,with significant changes in SOD and CAT activities.The malondialdehyde(MDA)content in all inoculated groups was lower than in CK,with Y12 being the lowest,at approximately 30%of CK.Gene expression corresponding to these three enzymes also increased variably,with POD expression in Y2 being the highest at 2.73 times that of CK.SOD and CAT expression in Y12 were the highest,at 1.84 and 4.39 times that of CK,respectively.These results indicate that inoculating phosphate solubilizing bacteria can enhance the growth of F.taipaiensis P.Y.Li,with the mixed inoculation groups W12 and Y12 demonstrating superior effects.This lays a theoretical foundation for selecting bacterial fertilizers in the cultivation process of F.taipaiensis P.Y.Li.
基金supported by the National Natural Science Foundation of China(Grant Nos.82073934,81872937,and 81673513).
文摘The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway.
基金supported by the National Key Research and Development Program of China(2023YFD1202901)the China Agriculture Research System of MOF and MARA(CARS-02-06)the Key Area Research and Development Program of Guangdong Province(2018B020202008).
文摘To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.
基金Authors are also grateful to RHO’s postdoctoral contract (Ayuda IJC2020-045695-I financed by MCIN/AEI/10.13039/501100011033,European Union NextGeneration EU/PRTR)。
文摘Parkinson’s disease:Parkinson’s disease(PD) is the second most prevalent neurodegenerative disease,after Alzheimer’s disease,affecting 1%of the general population over the age of 65years.According to data from the World Health Organization(WHO),its prevalence has doubled in the past 25 years.In 2019,global estimates indicated over 8.5 million individuals with PD and it is suggested that PD caused 329000 deaths,an increase of over 100% since 2000(WHO,2022).
基金partly funded by the Clinician-Scientist grant(No.472-0-0)by the medical faculty of the University of Tübingen(to SCV).
文摘Ambroxol hydrochloride(2-amino-3,5-dibromo-N-methylbenzylamine hydrochloride)has been used as a mucolytic agent in the treatment of respiratory diseases since the late 1970s.Its effects on mucus membranes such as mucus disruption,increased mucus production,and low toxicity profile were addressed in its original German patent in 1966.These first described properties have kept Ambroxol available worldwide and over the counter in the pharmaceutical market to this day.