[Objective] The aim of experiment was to lay molecular foundation for studying maturity mechanism of banana after harvest. [Method] The combined method of suppressing subtractive hybridization and cDNA micro-array wer...[Objective] The aim of experiment was to lay molecular foundation for studying maturity mechanism of banana after harvest. [Method] The combined method of suppressing subtractive hybridization and cDNA micro-array were used to obtain cDNA segment of one PRMT gene in banana and the whole cDNA sequence of the gene was cloned.The bioinformatics analysis was operated on it,in addition, the expression profile analysis was conducted in different organs and different mature periods of banana.[Result] The whole length of cDNA in MaPRMT1 was 1 158 bp and possessed a complete open reading frame,which could encode 385 amino acids.It had high homology with PRMT in plant,containing one Methyltransf_1 domain.The MaPRMT1 gene was expressed in root,stem,leaf and fruit of banana and the expression levels in stem and leaf were relatively high.As the increase of days after harvest,the expression level declined gradually,however it reached maximum when ethylene release was biggest,then it declined.[Conclusion] MaPRMT1 belonged to the first kind of arginine methyltransferase and it was expressed differently in different organs and fruits at different mature periods.展开更多
This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5(PRMT5)in cisplatin-induced hearing loss.The effects of PRMT5 inhibition on cisplatin-induced auditory injury we...This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5(PRMT5)in cisplatin-induced hearing loss.The effects of PRMT5 inhibition on cisplatin-induced auditory injury were determined using immunohistochemistry,apoptosis assays,and auditory brainstem response.The mechanism of PRMT5 inhibition on hair cell survival was assessed using RNA-seq and Cleavage Under Targets and Tagment-quantitative polymerase chain reaction(CUT&Tag-qPCR)analyses in the HEI-OC1 cell line.Pharmacological inhibition of PRMT5 significantly alleviated cisplatin-induced damage to hair cells and spiral ganglion neurons in the cochlea and decreased apoptosis by protecting mitochondrial function and preventing the accumulation of reactive oxygen species.CUT&Tag-qPCR analysis demonstrated that inhibition of PRMT5 in HEI-OC1 cells reduced the accumulation of H4R3me2s/H3R8me2s marks at the promoter region of the Pik3ca gene,thus activating the expression of Pik3ca.These findings suggest that PRMT5 inhibitors have strong potential as agents against cisplatininduced ototoxicity and can lay the foundation for further research on treatment strategies of hearing loss.展开更多
Protein arginine methyltransferase 7(PRMT7)is closely related to the formation of lung cancer,breast cancer and other malignant tumors,and it may be a potential target gene for malignant tumor therapy.Dishevelleds(DVL...Protein arginine methyltransferase 7(PRMT7)is closely related to the formation of lung cancer,breast cancer and other malignant tumors,and it may be a potential target gene for malignant tumor therapy.Dishevelleds(DVLs)are key factors involved in cell proliferation,invasion and metastasis.Among the dishevelleds,the dishevelled segment polarity protein 3(DVL3)is a key protein in the Wnt signaling pathway,and its abnormal expression plays an important role in the occurrence and development of malignant tumors.This paper reviewed the advances in research of PRMT7 and DVL3 in gastric cancer.展开更多
Arabidopsis AtPRMT10 is a plant-specific type I protein arginine methyltransferase that can asymmetrically dimethylate arginine 3 of histone H4 with auto-methylation activity.Mutations of AtPRMT10 derepress FLOWERING ...Arabidopsis AtPRMT10 is a plant-specific type I protein arginine methyltransferase that can asymmetrically dimethylate arginine 3 of histone H4 with auto-methylation activity.Mutations of AtPRMT10 derepress FLOWERING LOCUS C(FLC)expression resulting in a late-flowering phenotype.Here,to further investigate the biochemical characteristics of AtPRMT10,we analyzed a series of mutated forms of the AtPRMT10 protein.We demon-strate that the conserved“VLD”residues and“double-E loop”are essential for enzymatic activity of AtPRMT10.In addition,we show that Arg54 and Cys259 of AtPRMT10,two residues unreported in animals,are also important for its enzymatic activity.We find that Arg13 of AtPRMT10 is the auto-methylation site.However,substitution of Arg13 to Lys13 does not affect its enzymatic activity.In vivo complementation assays reveal that plants expressing AtPRMT10 with VLD-AAA,E143Q or E152Q mutations retain high levels of FLC expression and fail to rescue the late-flowering phenotype of atprmt10 plants.Taken together,we conclude that the methyltransferase activity of AtPRMT10 is essential for repressing FLC expression and promoting flowering in Arabidopsis.展开更多
文摘[Objective] The aim of experiment was to lay molecular foundation for studying maturity mechanism of banana after harvest. [Method] The combined method of suppressing subtractive hybridization and cDNA micro-array were used to obtain cDNA segment of one PRMT gene in banana and the whole cDNA sequence of the gene was cloned.The bioinformatics analysis was operated on it,in addition, the expression profile analysis was conducted in different organs and different mature periods of banana.[Result] The whole length of cDNA in MaPRMT1 was 1 158 bp and possessed a complete open reading frame,which could encode 385 amino acids.It had high homology with PRMT in plant,containing one Methyltransf_1 domain.The MaPRMT1 gene was expressed in root,stem,leaf and fruit of banana and the expression levels in stem and leaf were relatively high.As the increase of days after harvest,the expression level declined gradually,however it reached maximum when ethylene release was biggest,then it declined.[Conclusion] MaPRMT1 belonged to the first kind of arginine methyltransferase and it was expressed differently in different organs and fruits at different mature periods.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.:82271158,82192865,and 82071045)Wenzhou Municipal Science and Technology Research Program(Grant No.:2021Y0681).
文摘This study aimed to evaluate the therapeutic potential of inhibiting protein arginine methyltransferase 5(PRMT5)in cisplatin-induced hearing loss.The effects of PRMT5 inhibition on cisplatin-induced auditory injury were determined using immunohistochemistry,apoptosis assays,and auditory brainstem response.The mechanism of PRMT5 inhibition on hair cell survival was assessed using RNA-seq and Cleavage Under Targets and Tagment-quantitative polymerase chain reaction(CUT&Tag-qPCR)analyses in the HEI-OC1 cell line.Pharmacological inhibition of PRMT5 significantly alleviated cisplatin-induced damage to hair cells and spiral ganglion neurons in the cochlea and decreased apoptosis by protecting mitochondrial function and preventing the accumulation of reactive oxygen species.CUT&Tag-qPCR analysis demonstrated that inhibition of PRMT5 in HEI-OC1 cells reduced the accumulation of H4R3me2s/H3R8me2s marks at the promoter region of the Pik3ca gene,thus activating the expression of Pik3ca.These findings suggest that PRMT5 inhibitors have strong potential as agents against cisplatininduced ototoxicity and can lay the foundation for further research on treatment strategies of hearing loss.
基金Supported by Chengde Medical University-National Natural Science Foundation of China Project Cultivation Fund (202114)Chengde Medical UniversitySchool-level Key Project Fund (201711)+1 种基金Key Discipline Construction Project of Hebei Province [Ji Jiao Gao (2013) No. 4:Pathology and Pathophysiology]Master Candidate Innovation Ability Training Funding Project of Hebei Province (CXZZSS2022141)
文摘Protein arginine methyltransferase 7(PRMT7)is closely related to the formation of lung cancer,breast cancer and other malignant tumors,and it may be a potential target gene for malignant tumor therapy.Dishevelleds(DVLs)are key factors involved in cell proliferation,invasion and metastasis.Among the dishevelleds,the dishevelled segment polarity protein 3(DVL3)is a key protein in the Wnt signaling pathway,and its abnormal expression plays an important role in the occurrence and development of malignant tumors.This paper reviewed the advances in research of PRMT7 and DVL3 in gastric cancer.
基金supported by the National Basic Research Program of China(Nos.2011CB915400 and 2009CB941500 to X.C.)the National Natural Science Foundation of China(Grant Nos.30930048 and 30921061 to X.C.,and 90919033 to C.L.)the Chinese Academy of Sciences(No.KSCX2-EW-Q-24-02 to C.L.)。
文摘Arabidopsis AtPRMT10 is a plant-specific type I protein arginine methyltransferase that can asymmetrically dimethylate arginine 3 of histone H4 with auto-methylation activity.Mutations of AtPRMT10 derepress FLOWERING LOCUS C(FLC)expression resulting in a late-flowering phenotype.Here,to further investigate the biochemical characteristics of AtPRMT10,we analyzed a series of mutated forms of the AtPRMT10 protein.We demon-strate that the conserved“VLD”residues and“double-E loop”are essential for enzymatic activity of AtPRMT10.In addition,we show that Arg54 and Cys259 of AtPRMT10,two residues unreported in animals,are also important for its enzymatic activity.We find that Arg13 of AtPRMT10 is the auto-methylation site.However,substitution of Arg13 to Lys13 does not affect its enzymatic activity.In vivo complementation assays reveal that plants expressing AtPRMT10 with VLD-AAA,E143Q or E152Q mutations retain high levels of FLC expression and fail to rescue the late-flowering phenotype of atprmt10 plants.Taken together,we conclude that the methyltransferase activity of AtPRMT10 is essential for repressing FLC expression and promoting flowering in Arabidopsis.