期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Regulation of protein degradation pathways by amino acids and insulin in skeletal muscle of neonatal pigs 被引量:4
1
作者 Agus Suryawan Teresa A Davis 《Journal of Animal Science and Biotechnology》 SCIE CAS 2014年第3期299-309,共11页
Background: The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine... Background: The rapid gain in lean mass in neonates requires greater rates of protein synthesis than degradation. We previously delineated the molecular mechanisms by which insulin and amino acids, especially leucine, modulate skeletal muscle protein synthesis and how this changes with development. In the current study, we identified mechanisms involved in protein degradation regulation. In experiment 1,6- and 26-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic, 2) euinsulinemic-euglycemiohyperaminoacidemic, and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps for 2 h. In experiment 2, 5-d-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic-euleucinemic, 2) euinsulinemic-euglycemic-hypoaminoacidemic- hyperleucinemic, and 3) euinsulinemic-euglycemic-euaminoacidemic-hyperleucinemic clamps for 24 h. We determined in muscle indices of ubiquitin-proteasome, i.e., atrogin-1 (MAFbx) and muscle RING-finger protein-1 (MuRF1) and autophagy-lysosome systems, i.e., unc51-1ike kinase 1 (UKL1), microtubule-associated protein light chain 3 (LC3), and lysosomal-associated membrane protein 2 (Lamp-2). For comparison, we measured ribosomal protein 56 (rpS6) and eukaryotic initiation factor 4E (elF4E) activation, components of translation initiation. Results: Abundance of atrogin-1, but not MuRF1, was greater in 26- than 6-d-old pigs and was not affected by insulin, amino acids, or leucine. Abundance of ULK1 and LC3 was higher in younger pigs and not affected by treatment. The LC3-11/LC3-1 ratio was reduced and ULK1 phosphorylation increased by insulin, amino acids, and leucine. These responses were more profound in younger pigs. Abundance of Lamp-2 was not affected by treatment or development. Abundance of elF4E, but not rpS6, was higher in 6- than 26-d-old-pigs but unaffected by treatment. Phosphorylation of elF4E was not affected by treatment, however, insulin, amino acids, and leucine stimulated rpS6 phosphorylation, and the responses decreased with development. 展开更多
关键词 Amino acids Autophagy INSULIN LEUCINE Muscle NEONATE protein degradation protein synthesis Swine UBIQUITIN
下载PDF
Inhibition of protein degradation increases the Bt protein concentration in Bt cotton
2
作者 Yuting Liu Hanjia Li +6 位作者 Yuan Chen Tambel Leila.I.M Zhenyu Liu Shujuan Wu Siqi Sun Xiang Zhang Dehua Chen 《Journal of Integrative Agriculture》 SCIE CAS 2024年第6期1897-1909,共13页
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s... Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production. 展开更多
关键词 Bt cotton Bt protein inhibition of protein degradation protein degradation metabolism
下载PDF
ATP regulates the phosphorylation and degradation of myofibrillar proteins in ground ovine muscle 被引量:2
3
作者 REN Chi HOU Cheng-li +3 位作者 ZHANG De-quan LI Xin XIAO Xiong BAI Yu-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第1期311-318,共8页
Phosphorylation post-translational modification plays an important role in postmortem muscle quality traits. Adenosine triphosphate(ATP) is an energy source and a key substrate of phosphorylation which provides the ph... Phosphorylation post-translational modification plays an important role in postmortem muscle quality traits. Adenosine triphosphate(ATP) is an energy source and a key substrate of phosphorylation which provides the phosphatase groups to proteins in the presence of protein kinases. However, in postmortem muscle, the effects of ATP content on phosphorylation are poorly studied. The study investigated the effect of ATP on protein phosphorylation and degradation in postmortem ovine muscle. The ground muscle with/without additional ATP were treated/control groups and stored at 25 and 4℃, respectively. The ATP content led to different changes of p H value between the ATP-treated and control groups. The phosphorylation level of myofibrillar proteins was higher(P<0.05) in ATP-treated group compared to the control group at both temperatures, which suggested that ATP played a vital role in postmortem protein phosphorylation. A slower degradation rate of μ-calpain, desmin and troponin T was observed in the ATP-treated group which showed that there was a negative relationship between ATP level and the degradation of proteins. These observations clearly highlighted the role of ATP on the development of meat quality by regulating the phosphorylation and degradation of myofibrillar proteins in postmortem ovine muscle. 展开更多
关键词 ATP postmortem ovine muscle PHOSPHORYLATION protein degradation
下载PDF
Non-small molecule PROTACs(NSM-PROTACs):Protein degradation kaleidoscope 被引量:1
4
作者 Sinan Ma Jianai Ji +8 位作者 Yuanyuan Tong Yuxuan Zhu Junwei Dou Xian Zhang Shicheng Xu Tianbao Zhu Xiaoli Xu Qidong You Zhengyu Jiang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第7期2990-3005,共16页
The proteolysis targeting chimeras(PROTACs)technology has been rapidly developed since its birth in 2001,attracting rapidly growing attention of scientific institutes and pharmaceutical companies.At present,a variety ... The proteolysis targeting chimeras(PROTACs)technology has been rapidly developed since its birth in 2001,attracting rapidly growing attention of scientific institutes and pharmaceutical companies.At present,a variety of small molecule PROTACs have entered the clinical trial.However,as small molecule PROTACs flourish,non-small molecule PROTACs(NSM-PROTACs)such as peptide PROTACs,nucleic acid PROTACs and antibody PROTACs have also advanced considerably over recent years,exhibiting the unique characters beyond the small molecule PROTACs.Here,we briefly introduce the types of NSM-PROTACs,describe the advantages of NSM-PROTACs,and summarize the development of NSM-PROTACs so far in detail.We hope this article could not only provide useful insights into NSM-PROTACs,but also expand the research interest of NSM-PROTACs. 展开更多
关键词 Non-small molecule PROTACs protein degradation Peptide PROTACs Nucleic acid PROTACs Antibody PROTACs
原文传递
Enzyme-Catalyzed Activation of Pro-PROTAC for Cell-Selective Protein Degradation 被引量:2
5
作者 Chunjing Liang Qizhen Zheng +3 位作者 Tianli Luo Weiqi Cai Lanqun Mao Ming Wang 《CCS Chemistry》 CAS 2022年第12期3809-3819,共11页
Proteolysis targeting chimera(PROTAC)technology is a chemical protein knockdown approach that degrades protein by hijacking the cellular ubiquitinproteasome system to impede tumor growth.Its therapeutic potential,howe... Proteolysis targeting chimera(PROTAC)technology is a chemical protein knockdown approach that degrades protein by hijacking the cellular ubiquitinproteasome system to impede tumor growth.Its therapeutic potential,however,isdifficult to define due to the lack of control over the cell selectivity of PROTACs,in particular,if the therapeutic purpose is to be executedin a specific cell type.Herein,we report the design of a Pro-PROTAC and its catalytic activation of the endogenous overexpressed enzyme in cancer cells for cellselective protein degradation.We demonstrate that the chemical modification of the binding site between PROTAC and E3 ligase with trimethyl-locked quinone efficiently blocks the protein degradation capability of PROTAC.However,NAD(P)H quinone dehydrogenase 1(NQO1),an enzyme overexpressed in cancer cells,could reduce the trimethyl-locked quinone to remove the chemical modification and activate NQO1-PROTAC for cancer cell-selective protein degradation.Further,we show that NQO1-catalyzedβ-Lapachone reduction potentiated cellular oxidative stress to activate aryl boronic acid-caged ROS-PROTAC in living cells for bromodomain-containing protein 4 degradation with enhanced cell selectivity.Collectively,our strategy of designing Pro-PROTAC in response to endogenous species of diseased cells expands the chemical biology toolbox for cell-selective protein degradation and would be of great interest in targeted therapeutics discovery. 展开更多
关键词 proteolysis targeting chimera cell-selective protein degradation enzymatic activation
原文传递
Nucleolus-localized Def-CAPN3 protein degradation pathway and its role in cell cycle control and ribosome biogenesis
6
作者 Shuyi Zhao Delai Huang Jinrong Peng 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2021年第11期955-960,共6页
The nucleolus,as the‘nucleus of the nucleus’,is a prominent subcellular organelle in a eukaryocyte.The nucleolus serves as the centre for ribosome biogenesis,as well as an important site for cell-cycle regulation,ce... The nucleolus,as the‘nucleus of the nucleus’,is a prominent subcellular organelle in a eukaryocyte.The nucleolus serves as the centre for ribosome biogenesis,as well as an important site for cell-cycle regulation,cellular senescence,and stress response.The protein composition of the nucleolus changes dynamically through protein turnover to meet the needs of cellular activities or stress responses.Recent studies have identified a nucleolus-localized protein degradation pathway in zebrafish and humans,namely the Def-CAPN3 pathway,which is essential to ribosome production and cell-cycle progression,by controlling the turnover of multiple substrates(e.g.,ribosomal small-subunit[SSU]processome component Mpp10,transcription factor p53,check-point proteins Chk1 and Wee1).This pathway relies on the Ca2þ-dependent cysteine proteinase CAPN3 and is independent of the ubiquitin-mediated proteasome pathway.CAPN3 is recruited by nucleolar protein Def from cytoplasm to nucleolus,where it proteolyzes its substrates which harbor a CAPN3 recognition-motif.Def depletion leads to the exclusion of CAPN3 and accumulation of p53,Wee1,Chk1,and Mpp10 in the nucleolus that result in cell-cycle arrest and rRNA processing abnormality.Here,we summarize the discovery of the Def-CAPN3 pathway and propose its biological role in cell-cycle control and ribosome biogenesis. 展开更多
关键词 NUCLEOLUS protein degradation Def CAPN3 P53 CHK1 Wee1 Mpp10 Sas10
原文传递
Machine Learning Modeling of Protein-intrinsic Features Predicts Tractability of Targeted Protein Degradation
7
作者 Wubing Zhang Shourya S.Roy Burman +11 位作者 Jiaye Chen Katherine A.Donovan Yang Cao Chelsea Shu Boning Zhang Zexian Zeng Shengqing Gu Yi Zhang Dian Li Eric S.Fischer Collin Tokheim X.Shirley Liu 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2022年第5期882-898,共17页
Targeted protein degradation(TPD)has rapidly emerged as a therapeutic modality to eliminate previously undruggable proteins by repurposing the cell’s endogenous protein degradation machinery.However,the susceptibilit... Targeted protein degradation(TPD)has rapidly emerged as a therapeutic modality to eliminate previously undruggable proteins by repurposing the cell’s endogenous protein degradation machinery.However,the susceptibility of proteins for targeting by TPD approaches,termed“degradability”,is largely unknown.Here,we developed a machine learning model,model-free analysis of protein degradability(MAPD),to predict degradability from features intrinsic to protein targets.MAPD shows accurate performance in predicting kinases that are degradable by TPD compounds[with an area under the precision–recall curve(AUPRC)of 0.759 and an area under the receiver operating characteristic curve(AUROC)of 0.775]and is likely generalizable to independent non-kinase proteins.We found five features with statistical significance to achieve optimal prediction,with ubiquitination potential being the most predictive.By structural modeling,we found that E2-accessible ubiquitination sites,but not lysine residues in general,are particularly associated with kinase degradability.Finally,we extended MAPD predictions to the entire proteome to find964 disease-causing proteins(including proteins encoded by 278 cancer genes)that may be tractable to TPD drug development. 展开更多
关键词 Targeted protein degradation DEGRADABILITY protein-intrinsic feature UBIQUITINATION Machine learning
原文传递
Spatiotemporal regulation of ubiquitin-mediated protein degradation via upconversion optogenetic nanosystem
8
作者 Yafeng Hao Taofeng Du +7 位作者 Gaoju Pang Jiahua Li Huizhuo Pan Yingying Zhang Lizhen Wang Jin Chang En-min Zhou Hanjie Wang 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3253-3260,共8页
Protein degradation technology,which is one of the most direct and effective ways to regulate the life activities of cells,is expected to be applied to the treatment of various diseases.However,current protein degrada... Protein degradation technology,which is one of the most direct and effective ways to regulate the life activities of cells,is expected to be applied to the treatment of various diseases.However,current protein degradation technologies such as some small-molecule degraders which are unable to achieve spatiotemporal regulation,making them difficult to transform into clinical applications.In this article,an upconversion optogenetic nanosystem was designed to attain accurate regulation of protein degradation.This system worked via two interconnected parts:1)the host cell expressed light-sensitive protein that could trigger the ubiquitinproteasome pathway upon blue-light exposure;2)the light regulated light-sensitive protein by changing light conditions to achieve regulation of protein degradation.Experimental results based on model protein(Green Fluorescent Protein,GFP)validated that this system could fulfill protein degradation both in vitro(both Hela and 293T cells)and in vivo(by upconversion optogenetic nanosystem),and further demonstrated that we could reach spatiotemporal regulation by changing the illumination time(0–25 h)and the illumination frequency(the illuminating frequency of 0–30 s every 1 min).We further took another functional protein(The Nonstructural Protein 9,NSP9)into experiment.Results confirmed that the proliferation of porcine reproductive and respiratory syndrome virus(PRRSV)was inhibited by degrading the NSP9 in this light-induced system,and PRRSV proliferation was affected by different light conditions(illumination time varies from 0–24 h).We expected this system could provide new perspectives into spatiotemporal regulation of protein degradation and help realize the clinical application transformation for treating diseases of protein degradation technology. 展开更多
关键词 protein degradation ubiquitin-proteasome system OPTOGENETICS upconversion materials the nonstructural protein9(NSP9) porcine reproductive and respiratory syndrome virus(PRRSV)
原文传递
The role of 5′-adenosine monophosphate-activated protein kinase(AMPK)in skeletal muscle atrophy
9
作者 KAI DANG HAFIZ MUHAMMAD UMER FAROOQ +2 位作者 YUAN GAO XIAONI DENG AIRONG QIAN 《BIOCELL》 SCIE 2023年第2期269-281,共13页
As a key coordinator of metabolism,AMP-activated protein kinase(AMPK)is vitally involved in skeletal muscle maintenance.AMPK exerts its cellular effects through its function as a serine/threonine protein kinase by reg... As a key coordinator of metabolism,AMP-activated protein kinase(AMPK)is vitally involved in skeletal muscle maintenance.AMPK exerts its cellular effects through its function as a serine/threonine protein kinase by regulating many downstream targets and plays important roles in the development and growth of skeletal muscle.AMPK is activated by phosphorylation and exerts its function as a kinase in many processes,including synthesis and degradation of proteins,mitochondrial biogenesis,glucose uptake,and fatty acid and cholesterol metabolism.Skeletal muscle atrophy is a result of various diseases or disorders and is characterized by a decrease in muscle mass.The pathogenesis and therapeutic strategies of skeletal muscle atrophy are still under investigation.In this review,we discuss the role of AMPK in skeletal muscle metabolism and atrophy.We also discuss targeting AMPK for skeletal muscle treatment,including exercise,AMPK activators including 5-amino-4-imidazolecarboxamide ribonucleoside and metformin,and low-level lasers.These studies show the important roles of AMPK in regulating muscle metabolism and function;thus,the treatment of skeletal muscle atrophy needs to take into account the roles of AMPK. 展开更多
关键词 AMPK Autophagy protein degradation protein synthesis Skeletal muscle atrophy Ubiquitin
下载PDF
2007 International Symposium on Protein Modification and Degradation in Beijing(SPMDB2007)
10
《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第6期496-496,共1页
Presidents of Symposium Depei Liu,President of Chinese Academy of Medical Sciences Zhu Chen,Vice President of Chinese Academy ofSciences.
关键词 SPMDB2007 CHEN International Symposium on protein Modification and degradation in Beijing
下载PDF
Design and Synthesis of Novel Bispecific Molecules for Inducing BRD4 Protein Degradation
11
作者 WANG Shihui SONG Yuming +5 位作者 WANG Yue GAO Yang YU Shanshan ZHAO Qianqian JIN Xiangqun LU Haibin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第1期67-74,共8页
Proteolysis targeting chimeras(PROTACs) are bispecific molecules containing a target protein binder and a ubiquitin ligase binder connected by a linker. Recently, some heterobifunctional small molecule bromodomain-c... Proteolysis targeting chimeras(PROTACs) are bispecific molecules containing a target protein binder and a ubiquitin ligase binder connected by a linker. Recently, some heterobifunctional small molecule bromodomain-containing protein 4(BRD4) degraders based on the concept of PROTACs were designed to induce the degradation of BRD4 protein. Herein, we synthesized a new class of PROTAC BRD4 degraders. One of the most promising compound 22f exhibited robust potency of BRD4 inhibition with IC50 value of (9.4±0.6) nmol/L. Furthermore, com- pound 22f potently inhibited cell proliferation in BRD4-sensitive cell lines RS4;11 with IC50 value of (27.6±1.6) nmol/L and capable of inducing degradation of BRD4 protein at 0.5-1.0 μmol/L in the RS4;11 cells. These data establish that compound 22f is a potent and efficacious BRD4 degrader. 展开更多
关键词 Proteolysis targeting chimera(PROTAC) Bromodomam-containing protein 4(BR/M) degrader Bromodomain-containing protein 4(BRD4) inhibitor
原文传递
Degradation of Cry1Ab Protein Within Transgenic Bt Maize Tissue by Composite Microbial System of MC1
12
作者 Meng Yao Gu Wan-rong +3 位作者 Ye Le-fu Chen Dong-sheng Li Jing Wei Shi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2014年第4期10-17,共8页
Environmental safety issues involved in transgenic plants have become the concern of researchers, practitioners and policy makers in recent years. Potential differences between Bt maize(ND1324 and ND2353 expressing t... Environmental safety issues involved in transgenic plants have become the concern of researchers, practitioners and policy makers in recent years. Potential differences between Bt maize(ND1324 and ND2353 expressing the insecticidal Cry1Ab protein) and near-isogenic non-Bt varieties(ND1392 and ND223) in their influence on the composite microbial system of MC1 during the fermentation process were studied during 2011-2012. Cry1Ab protein in Bt maize residues didn't affect characteristics of lignocellulose degradation by MC1, pH of fermentation broth decreasing at initial stage and increasing at later stage of degradation. The quality of various volatile products in fermentation broth showed that no signifi cant difference of residues fermentation existed between Bt maize and non-Bt maize. During the fermentation MC1 efficiently degraded maize residues by 83%-88%, and cellulose, hemicelluloses and lignin content decreased by 70%-72%, 72%-75% and 30%-37%, respectively. Besides that, no consistent difference was found between Bt and non-Bt maize residues lignocellulose degradation by MC1 during the fermentation process. MC1 degraded 88%-89% Cry1Ab protein in Bt maize residues, and in the fermentation broth of MC1 and bacteria of MC1 Cry1Ab protein was not detected. DGGE profi le analyses revealed that the microbial community drastically changed during 1-3 days and became stable until the 9th day. Though the dominant strains at different fermentation stages had signifi cantly changed, no difference on the dominant strains was observed between Bt and non-Bt maize at different stages. Our study indicated that Cry1Ab protein did not infl uence the growth characteristic of MC1. 展开更多
关键词 Bt maize degradation of Cry1AB protein composite microbial system of MC1
下载PDF
The role of sequestosome 1/p62 protein in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis 被引量:2
13
作者 Adriana Delice Foster Sarah Lyn Rea 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第12期2186-2194,共9页
Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are multifaceted diseases with genotypic,pathological and clinical overlap.One such overlap is the presence of SQSTM1/p62 mutations.While traditional... Amyotrophic lateral sclerosis and frontotemporal lobar degeneration are multifaceted diseases with genotypic,pathological and clinical overlap.One such overlap is the presence of SQSTM1/p62 mutations.While traditionally mutations manifesting in the ubiquitin-associated domain of p62 were associated with Paget’s disease of bone,mutations affecting all functional domains of p62 have now been identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients.p62 is a multifunctional protein that facilitates protein degradation through autophagy and the ubiquitin-proteasome system,and also regulates cell survival via the Nrf2 antioxidant response pathway,the nuclear factor-kappa B signaling pathway and apoptosis.Dysfunction in these signaling and protein degradation pathways have been observed in amyotrophic lateral sclerosis and frontotemporal lobar degeneration,and mutations that affect the role of p62 in these pathways may contribute to disease pathogenesis.In this review we discuss the role of p62 in these pathways,the effects of p62 mutations and the effect of mutations in the p62 modulator TANK-binding kinase 1,in relation to amyotrophic lateral sclerosis-frontotemporal lobar degeneration pathogenesis. 展开更多
关键词 aggregate/inclusion body formation amyotrophic lateral sclerosis-frontotemporal lobar degeneration AUTOPHAGY cell signaling MITOPHAGY p62/SQSTM1 protein degradation
下载PDF
Isolation,Identification of Bacillus Thuringiensis/Cereus and Its Enhancement on Protein Wastewater Treatment by Rhodobacter Sphaeroides
14
作者 Shuli Liu Guangming Zhang Jie Zhang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第5期69-75,共7页
In order to enhance the degrading protein capability of purple non-sulfur bacteria(PNSB),an effective strain,L2,was used to co-culture with Rhodobacter sphaeroides ATCC17023.The effects of added strain on protein remo... In order to enhance the degrading protein capability of purple non-sulfur bacteria(PNSB),an effective strain,L2,was used to co-culture with Rhodobacter sphaeroides ATCC17023.The effects of added strain on protein removal of R.sphaeroides were investigated.Results showed that strain L2,being identified as Bacillus thuringiensis/cereus,had a high potential for producing protease with a production of 295 U/m L.The optimal B.thuringiensis/cereus(40 μL) could significantly increase protein degradation of R.sphaeroides.Protein removal and biomass production were improved by 483% and 67%,respectively.R.sphaeroides/total biomass production was more than 95%.Theoretical analysis revealed that R.sphaeroides syntrophically interacted with B.thuringiensis/cereus.Protein degradation of B.thuringiensis/cereus provided small molecule substrates(VFAs) for R.sphaeroides growth and cells materials synthesis. 展开更多
关键词 Rhodobacter sphaeroides protein degradation PROTEASE Bacillus thuringiensis / cereus
下载PDF
Issues with Tropical and Temperate Ensilage Protein and Amino Acid Feeds Utilization: A Research Note
15
作者 Danny Agustin Flores Skye Blue Internet 《Agricultural Sciences》 CAS 2022年第11期1177-1185,共9页
Alfalfa protein breakdown was to soluble NPN of oligopeptide-N, AA-N, amide-N, amine-N and NH3-N. Acidity (pH) and moisture (Aw) are critical in determining extent of fermentation and changes in composition. Further c... Alfalfa protein breakdown was to soluble NPN of oligopeptide-N, AA-N, amide-N, amine-N and NH3-N. Acidity (pH) and moisture (Aw) are critical in determining extent of fermentation and changes in composition. Further changes in digestive flows and post-prandial plasma AA are indicators of protein status. Dual-purpose cropping and tree plant cropping was with ensiling management of the undergrowth. On-farm field-drying and probiotic additives are promising. It is suggested acidity with propionic acid and microbial inoculants together with field-drying and chop length are required to optimize profile qualities in silage. It is proposed use of denaturing with acid and dust cropping with a hypothetical PNA-Auxin repressor to plant protease. Further study with field-drying to follow is needed. Feeding HIS, ARG and LEU AA supplement to change GRH and GH profiles could be used to promote LBM in production. Dual-purpose cropping can expand subsistence to mixed farming with expanded livestock products and services and resources. PNA-Auxin and PNA-ARF penetrates the plant shoot tips to deliver a TF mRNA to boost proteins in residual cell tissues. Ensiled % AA-N delivery per os to per duodenum was higher;yet total AA-N flow was higher in the control. It is suggested that “bulk” flow was less but with a “tighter” conversion on TAA. FAA was 145% higher in the ensiled versus the fresh control indicating the ENU with less PFAA supplied. FAA on the ensiled diet is high inferred to be more soluble and escape lower from the rumen. WSC are less supplied in fermented forage with VFA being lower and presenting the question whether WSC should be supplied for energy and also with EFE through breaking down of polymers of lignocellulose. It was surmised, although not known, that higher dilution rate (% hr<sup>-1</sup>) was true on the fresh diet compared to the ensiled although end-products may initially detract with feed but that further digestion in the fresh feed may be higher with intake. Plasma AA before and after absorption or feeding are indicators of synthesis and breakdown. No data was available on N status;protein nutrition on neat silage was probably due to net efflux of AA with mobilization before influx with feeding and subsequent insulin action for uptake. Estuarine aquatic plant spp., water hyacinth used in the Philippines and duckweed studies in Australia, and post-harvest treatment with chemical additives and anti-microbial agents to help control potential transfer of diseases. “Greens” as supplements has yet to be established for anti-microbial properties for animal health and welfare. In conclusion, alfalfa silage fed at standard 0.6 cm particle size and wilted led to dramatic changes with AA breakdown, dramatic changes in duodenal AA flows from escape and recapture into microbial cells. Also N status of animals was compromised by lack of adequate “stores”, mobilized, resulting in a net decrease in total plasma AA with insulin-dependent uptake to tissue. 展开更多
关键词 SILAGE protein degradation Duodenal Amino Acid Flows Plasma Amino Acids protein Utilization
下载PDF
Winery by‑products as a feed source with functional properties:dose–response effect of grape pomace,grape seed meal,and grape seed extract on rumen microbial community and their fermentation activity in RUSITEC
16
作者 Ratchaneewan Khiaosa‑ard Mubarik Mahmood +3 位作者 Elsayed Mickdam Catia Pacifico Julia Meixner Laura‑Sophie Traintinger 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第6期2439-2453,共15页
Background Grape and winery by-products have nutritional values for cattle and also contain functional compounds like phenols,which not only bind to protein but can also directly affect microbiota and their function i... Background Grape and winery by-products have nutritional values for cattle and also contain functional compounds like phenols,which not only bind to protein but can also directly affect microbiota and their function in the rumen.We characterized the nutritional and functional effects of grape seed meal and grape pomace as well as an effective dosage of grape phenols on ruminal microbiota and fermentation characteristics using a rumen simulation technique.Results Six diets(each n=8)were compared including a control diet(CON,no by-product),a positive control diet(EXT,CON+3.7%grape seed extract on a dry matter(DM)basis),two diets with grape seed meal at 5%(GS-low)and 10%(GS-high),and two diets with grape pomace:at 10%(GP-low)and 20%(GP-high),on a DM basis.The inclusion of the by-product supplied total phenols at 3.4%,0.7%,1.4%,1.3%,and 2.7%of diet DM for EXT,GS-low,GS-high,GP-low,and GP-high,respectively.Diets were tested in four experimental runs.All treatments decreased ammonia concentrations and the disappearances of DM and OM(P<0.05)compared to CON.EXT and GP-high lowered butyrate and odd-and branch-chain short-chain fatty acids while increased acetate compared to CON(P<0.05).Treatments did not affect methane formation.EXT decreased the abundance of many bacterial genera including those belonging to the core microbiota.GP-high and EXT consistently decreased Olsenella and Anaerotipes while increased Ruminobacter abundances.Conclusion The data suggest that the inclusion of winery by-products or grape seed extract could be an option for reducing excessive ammonia production.Exposure to grape phenols at a high dosage in an extract form can alter the rumen microbial community.This,however,does not necessarily alter the effect of grape phenols on the microbial community function compared to feeding high levels of winery by-products.This suggests the dominant role of dosage over the form or source of the grape phenols in affecting ruminal microbial activity.In conclusion,supplementing grape phenols at about 3%of diet DM is an effective dosage tolerable to ruminal microbiota. 展开更多
关键词 Functional feed Grape pomace Grape seed protein degradation Rumen microbiota
下载PDF
Targeted Degradation of DNA/RNA Binding Proteins via Covalent Hydrophobic Tagging
17
作者 Yan Wang Jingzi Zhang +4 位作者 Jiafang Deng Chengzhi Wang Lei Fang Yan Zhang Jinbo Li 《CCS Chemistry》 CSCD 2023年第10期2207-2214,共8页
Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Her... Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Herein,we report ligandassisted covalent hydrophobic tagging(LACHT)as a modular strategy for TPD of these difficult-totarget proteins.Guided by a noncovalent protein ligand,LACHT leverages a reactive N-acyl-N-alkyl sulfonamide group to covalently label the protein target with a hydrophobic adamantane,which further engages the cellular quality control mechanism to induce proteolytic degradation.Using a smallmolecule ligand,we demonstrated that LACHT allowed TPD of a DBP,bromodomain-containing protein 4,in human leukemia cells with high efficiency.Mechanistic studies revealed that LACHT-mediated TPD dependent on ligand-directed irreversible tagging and the covalently labeled proteins underwent polyubiquitination before removal through both the proteasome and the lysosome.Furthermore,when an RNA ligand was employed,we showed that LACHT also enabled TPD of an RBP,Lin28a,leading to upregulation of its downstream let-7 miRNA.This study thus provides a generalizable platform to expand the TPD toolbox for biomedical applications. 展开更多
关键词 targeted protein degradation covalent labeling hydrophobic tagging DNA/RNA binding proteins miRNA
原文传递
Artificial Nucleic Acid Tractor-Directed Simultaneous Depletion of Oncogenic Membrane Proteins Without Hijacking Proteolysis-Specific Actuator
18
作者 Zhen Zou Songlan Pan +8 位作者 Qian Xue Ting Chen Ziyun Huang Bei Qing Pengfei Liu Conghui Zhao Yunlin Sun Erhu Xiong Ronghua Yang 《CCS Chemistry》 CSCD 2024年第2期439-449,共11页
Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific a... Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific actuator to initiate degradation of targeted proteins in the proteasome or lysosome.Herein,we report an artificial tractor that can induce endocytosis-mediated protein depletion without hijacking a proteolysis-specific actuator.In this design,bispecific aptamer chimeras(BSACs)are established,which can bridge human epidermal growth factor receptor 2(ErbB-2),an important biomarker in a common important biomarker in cancer,with membrane proteins of interest.Taking advantage of the property of aptamer-induced endocytosis and digestion of ErbB-2,another membrane protein is translocated into the lysosome in a hitchhike-like manner,resulting in lysosomal proteolysis along with ErbB-2.This strategy frees the TPD from the fundamental limitation of proteolysis-specific actuator and allows simultaneous regulation of the quantity and function of two oncogenic receptors in a cell-type-specific manner,expanding the application scope of TPD-based therapeutics. 展开更多
关键词 targeted protein degradation APTAMER epidermal growth factor receptor 2 LYSOSOME membrane proteins cancer therapy
原文传递
Plasma Membrane Protein Ubiquitylation and Degradation as Determinants of Positional Growth in Plants 被引量:3
19
作者 Barbara Korbei Christian Luschnig 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2013年第9期809-823,共15页
Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Cross-talk between p... Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Cross-talk between plants and their environment requires tight regulation of information exchange at the plasma membrane (PM). Plasma membrane proteins mediate such communication, by sensing variations in nutrient availability, external cues as well as by controlled solute transport across the membrane border. Localiza-tion and steady-state levels are essential for PM protein function and ongoing research identified cis- and trans-acting determinants, involved in control of plant PM protein localization and turnover. In this overview, we summarize recent progress in our understanding of plant PM protein sorting and degradation via ubiquitylation, a post-translational and reversible modification of proteins. We highlight characterized components of the machinery involved in sorting of ubiquitylated PM proteins and discuss consequences of protein ubiquitylation on fate of selected PM proteins. Specifically, we focus on the role of ubiquitylation and PM protein degradation in the regulation of polar auxin transport (PAT). We combine this regulatory circuit with further aspects of PM protein sorting control, to address the interplay of events that might control PAT and polarized growth in higher plants. 展开更多
关键词 ARABIDOPSIS AUXIN PIN protein protein degradation ubiquitin.
原文传递
Protein Domains Involved in Assembly in the Endoplasmic Reticulum Promote Vacuolar Delivery when Fused to Secretory GFP, Indicating a Protein Quality Control Pathway for Degradation in the Plant Vacuole 被引量:2
20
作者 Ombretta Foresti Francesca De Marchis +4 位作者 Maddalena de Virgilio Eva M. Klein Sergio Arcioni Michele Bellucci Alessandro Vitale 《Molecular Plant》 SCIE CAS CSCD 北大核心 2008年第6期1067-1076,共10页
The correct folding and assembly of newly synthesized secretory proteins are monitored by the protein quality control system of the endoplasmic reticulum (ER). Through interactions with chaperones such as the bindin... The correct folding and assembly of newly synthesized secretory proteins are monitored by the protein quality control system of the endoplasmic reticulum (ER). Through interactions with chaperones such as the binding protein (BiP) and other folding helpers, quality control favors productive folding and sorts for degradation defective proteins. A major route for quality control degradation identified in yeast, plants, and animals is constituted by retrotranslocation from the ER to the cytosol and subsequent disposal by the ubiquitin/proteasome system, but alternative routes involving the vacuole have been identified in yeast. In this study, we have studied the destiny of sGFP418, a fusion between a secretory form of GFP and a domain of the vacuolar protein phaseolin that is involved in the correct assembly of phaseolin and in BiP recognition of unassembled subunits. We show that sGFP418, despite lacking the phaseolin vacuolar sorting signal, is delivered to the vacuole and fragmented, in a process that is inhibited by the secretory traffic inhibitor brefeldin A. Moreover, a fusion between GFP and a domain of the maize storage protein γ-zein involved in zein polymerization also undergoes post-translational fragmentation similar to that of sGFP418. These results show that defective secretory proteins with permanently exposed sequences normally involved in oligomerization can be delivered to the vacuole by secretory traffic. This strongly suggests the existence of a plant vacuolar sorting mechanism devoted to the disposal of defective secretory proteins. 展开更多
关键词 Endoplasmic reticulum protein degradation protein traffic vacuole.
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部