The monoterpene d limonene inhibit the plasma membrane associated P21 ras expression and the posttranslational isoprenylation of P21 ras , a mechanism that may contribute to its efficacy in the chemoprevent...The monoterpene d limonene inhibit the plasma membrane associated P21 ras expression and the posttranslational isoprenylation of P21 ras , a mechanism that may contribute to its efficacy in the chemoprevention and therapy of chemically induced rodent cancers and some human solid tumor cells. In the present study,the relative abilities of d limonene to inhibit membrane associated P21 ras expression in pancreas tumor cell(PaCa) was carried out with Western blotting, and the inhibition of farnesyl protein transferase (FTPase) activity during the Ras protein isoprenylation and cell proliferation were determined.Concomitantly,the effects of d limonene on P21 ras localization by immunohistochemistry and H ras oncogene expression in PaCa tumor cell line by Northern blotting were observed. The results showed that d limonene inhibited FPTase activity, thus to reduce P21H ras isoprenylation. d limonene could decrease P21 ras membrane association and increase cytosolic accumulation of P21 ras . This phenomenon was also noted when d limonene treated PaCa cells were stained immunohistochemically with anti P21 ras antibody. It is suggested that the inhibition of FPTase activity was closely related with the inhibiton of P21 ras membrane association and the alteration of P21 ras localization. Inhibition of farnesylation of P21 ras altered their intracellular localization and, hence, disrupted their biological activity,but no relationship with H ras oncogene expression was found.展开更多
Canola (Brassica napus L.) is one of the most important oilseed crops in the world and its seed yield and quality are significantly affected by drought stress. As an innate and adaptive response to water deficit, la...Canola (Brassica napus L.) is one of the most important oilseed crops in the world and its seed yield and quality are significantly affected by drought stress. As an innate and adaptive response to water deficit, land plants avoid potential damage by rapid biosynthesis of the phytohormone abscisic acid (ABA), which triggers stomatal closure to reduce transpirational water loss. The ABA-mediated stomatal response is a dosage-dependent process; thus, one genetic engineering approach for achieving drought avoidance could be to sensitize the guard cell's responsiveness to this hormone. Recent genetic studies have pinpointed protein farnesyltransferase as a key negative regulator controlling ABA sensitivity in the guard cells. We have previously shown that down-regulation of the gene encoding Arabidopsis β-subunit of farnesyltransferase (ERA1) enhances the plant's sensitivity to ABA and drought tolerance. Although the β-subunit of famesyltransferase (AtFTA) is also implicated in ABA sensing, the effectiveness of using such a gene target for improving drought tolerance in a crop plant has not been validated. Here, we report the identification and characterization of the promoter of Arabidopsis hydroxypyruvate reductase (AtHPR1), which expresses specifically in the shoot and not in non-photosynthetic tissues such as root. The promoter region of AtHPR1 contains the core motif of the well characterized dehydration-responsive cis-acting element and we have confirmed thatAtHPR1 expression is inducible by drought stress. Conditional and specific down-regulation of FTA in canola using the AtHPR1 promoter driving an RNAi construct resulted in yield protection against drought stress in the field. Using this molecular strategy, we have made significant progress in engineering drought tolerance in this important crop species.展开更多
文摘The monoterpene d limonene inhibit the plasma membrane associated P21 ras expression and the posttranslational isoprenylation of P21 ras , a mechanism that may contribute to its efficacy in the chemoprevention and therapy of chemically induced rodent cancers and some human solid tumor cells. In the present study,the relative abilities of d limonene to inhibit membrane associated P21 ras expression in pancreas tumor cell(PaCa) was carried out with Western blotting, and the inhibition of farnesyl protein transferase (FTPase) activity during the Ras protein isoprenylation and cell proliferation were determined.Concomitantly,the effects of d limonene on P21 ras localization by immunohistochemistry and H ras oncogene expression in PaCa tumor cell line by Northern blotting were observed. The results showed that d limonene inhibited FPTase activity, thus to reduce P21H ras isoprenylation. d limonene could decrease P21 ras membrane association and increase cytosolic accumulation of P21 ras . This phenomenon was also noted when d limonene treated PaCa cells were stained immunohistochemically with anti P21 ras antibody. It is suggested that the inhibition of FPTase activity was closely related with the inhibiton of P21 ras membrane association and the alteration of P21 ras localization. Inhibition of farnesylation of P21 ras altered their intracellular localization and, hence, disrupted their biological activity,but no relationship with H ras oncogene expression was found.
文摘Canola (Brassica napus L.) is one of the most important oilseed crops in the world and its seed yield and quality are significantly affected by drought stress. As an innate and adaptive response to water deficit, land plants avoid potential damage by rapid biosynthesis of the phytohormone abscisic acid (ABA), which triggers stomatal closure to reduce transpirational water loss. The ABA-mediated stomatal response is a dosage-dependent process; thus, one genetic engineering approach for achieving drought avoidance could be to sensitize the guard cell's responsiveness to this hormone. Recent genetic studies have pinpointed protein farnesyltransferase as a key negative regulator controlling ABA sensitivity in the guard cells. We have previously shown that down-regulation of the gene encoding Arabidopsis β-subunit of farnesyltransferase (ERA1) enhances the plant's sensitivity to ABA and drought tolerance. Although the β-subunit of famesyltransferase (AtFTA) is also implicated in ABA sensing, the effectiveness of using such a gene target for improving drought tolerance in a crop plant has not been validated. Here, we report the identification and characterization of the promoter of Arabidopsis hydroxypyruvate reductase (AtHPR1), which expresses specifically in the shoot and not in non-photosynthetic tissues such as root. The promoter region of AtHPR1 contains the core motif of the well characterized dehydration-responsive cis-acting element and we have confirmed thatAtHPR1 expression is inducible by drought stress. Conditional and specific down-regulation of FTA in canola using the AtHPR1 promoter driving an RNAi construct resulted in yield protection against drought stress in the field. Using this molecular strategy, we have made significant progress in engineering drought tolerance in this important crop species.