AIM: To isolate a novel isoform of human HPO (HPO-205) from human fetal liver Marathon-ready cDNA and characterize its primary biological function. METHODS: 5'-RACE (rapid amplification of cDNA 5' ends) was us...AIM: To isolate a novel isoform of human HPO (HPO-205) from human fetal liver Marathon-ready cDNA and characterize its primary biological function. METHODS: 5'-RACE (rapid amplification of cDNA 5' ends) was used to isolate a novel isoform of hHPO in this paper. The constructed pcDNA(HPO-205), pcDNA(HPO) and pcDNA eukaryotic expression vectors were respectively transfected by lipofectamine method and the stimulation of DNA synthesis was observed by (3)H-TdR incorporation assay. Proteins extracted from different cells were analyzed by Western blot. RESULTS: A novel isoform of hHPO (HPO-205) encoding a 205 amino acid ORF corresponding to a translated production of 23 kDa was isolated and distinguished from the previous HPO that lacked the N-terminal 80 amino acids. The dose-dependent stimulation of DNA synthesis of HepG2 hepatoma cells by HPO-205 demonstrated its similar biological activity with HPO in vitro. The level of MAPK (Mitogen-activated protein kinase) phosphorylation by Western blot analysis revealed that HPO-205 might have the stronger activity of stimulating hepatic cell proliferation than that of HPO. CONCLUSION: A novel isoform of hHPO (HPO-205) was isolated from hepatic-derived cells. The comparison of HPO-205 and HPO will lead to a new insight into the structure and function of hHPO, and provide the new way of thinking to deeply elucidate the biological roles of HPO/ALR.展开更多
Protein arginine methyltransferases(PRMTs) catalyze the methylation of a variety of protein substrates, many of which have been linked to the development, progression and aggressiveness of different types of cancer. M...Protein arginine methyltransferases(PRMTs) catalyze the methylation of a variety of protein substrates, many of which have been linked to the development, progression and aggressiveness of different types of cancer. Moreover, aberrant expression of PRMTs has been observed in several cancer types. While the link between PRMTs and cancer is a relatively new area of interest, the functional implications documented thus far warrant further investigations into its therapeutic potential. However, the expression of these enzymes and the regulation of their activity in cancer are still significantly understudied. Currently there are nine main members of the PRMT family. Further, the existence of alternatively spliced isoforms for several of these family members provides an additional layer of complexity. Specifically, PRMT1, PRMT2, CARM1 and PRMT7 have been shown to have alternative isoforms and others may be currently unrealized. Our knowledge with respect to the relative expression and the specific functions of these isoforms is largely lacking and needs attention. Here we present a review of the current knowledge of theknown alternative PRMT isoforms and provide a rationale for how they may impact on cancer and represent potentially useful targets for the development of novel therapeutic strategies.展开更多
β-Trichosanthin, a type 1 ribosome-inactivating protein (RIP) isolated from the root tuber of Trichosanthe kirilowii Maxim, is an isoform of trichosanthin. Here we report its crystallization in two crystal forms us...β-Trichosanthin, a type 1 ribosome-inactivating protein (RIP) isolated from the root tuber of Trichosanthe kirilowii Maxim, is an isoform of trichosanthin. Here we report its crystallization in two crystal forms using the hanging-drop vapor-diffusion method. The form A and form B crystals belong to the orthorhombic space group P212121 and monoclinic space group P21, respectively. X-ray data have been collected to 1.6 and 1.2 A resolution for form A and form B crystals, respectively, using a synchrotron source.展开更多
This review article discusses dimensional reconstruction of alternative splicing that not only affects primarily the distributional dimensions of isoforms of various protein species but especially influences the natur...This review article discusses dimensional reconstruction of alternative splicing that not only affects primarily the distributional dimensions of isoforms of various protein species but especially influences the nature of interactivity events between various protein species and also the structure of the given protein molecules. In such terms, disorders of differentiation of individual tumors and of tumor types and subtypes would correlate with distinctive dimensions of expression of a limited number of genes in various modes of expressed selectivity programs. In particular, the differentiation programs of normal tissues would correlate with combinatorial systems of splicing factors and of auxiliary factors in the development of patterns of gene expression. The significance of mis-splicing events is consonant with the wide range of phenotypic expression of neoplastic lesions and in the great variety of differentiation patterns and also of the variable degrees of differentiation of various components of a given neoplasm. The structure of given protein isoforms resulting from alternative splicing correlate with the sequence context of exons in the enhancement or inhibition of splicing events and would also influence pathobiologic behavior patterns of given neoplastic lesions. The development of abnormal cell signalling pathways and of interactivity patterns in a combinatorial way would directly influence the stability and trafficking dynamics of given protein molecular species in inducing an abundance of protein isoform production. Series of multi-component systems ranging from receptivity to consequential pathways of development of differential phenotype would allow for a high degree of modulatory effect within systems implicating in particular the interactions of individual tumor cells with each other and with the matrix components. It is within the context of constitutive versus alternative splicing events that this review article proposes that proportional recreation of differentiation pathways promotes a self-progression of the pathobiologic processes of a given neoplastic lesion.展开更多
AIM: Using bacterial, yeast, or mammalian cell expressing a human drug metabolism enzyme would seem good way to study drug metabolism-related problems. Human cytochrome P-450 2C9(CYP2C9) is a polymorphic enzyme respon...AIM: Using bacterial, yeast, or mammalian cell expressing a human drug metabolism enzyme would seem good way to study drug metabolism-related problems. Human cytochrome P-450 2C9(CYP2C9) is a polymorphic enzyme responsible for the metabolism of a large number of clinically important drugs. It ranks among the most important drug metabolizing enzymes in humans. In order to provide a sufficient amount of the enzyme for drug metabolic research, the CYP2C9 cDNA was cloned and expressed stably in CHL cells. METHODS: After extraction of total RNA from human liver tissue, the human CYP2C9 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR), and cloned into cloning vector pGEM-T. The cDNA fragment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A transgenic cell line was established by transfecting the recombinant vector of pREP9-CYP2C9 into CHL cells. The enzyme activity of CYP2C9 catalyzing oxidation of tolbutamide to hydroxy tolbutamide in S9 fraction of the cell was determined by high performance liquid chromatography(HPLC). RESULTS: The amino acid sequence predicted from the cDNA segment was identical to that of CYP2C9*1, the wild type CYP2C9. However, there were two base differences, i.e. 21T】C, 1146C】T, but the encoding amino acid sequence was the same, L7, P382. The S9 fraction of the established cell line metabolizes tolbutamide to hydroxy tolbutamide; tolbutamide hydroxylase activity was found to be 0.465 +/- 0.109 micromol.min(-1).g(-1) S9 protein or 8.62 +/- 2.02mol.min(-1).mol(-1) CYP, but was undetectable in parental CHL cell. CONCLUSION: The cDNA of human CYP2C9 was successfully cloned and a cell line of CHL- CYP2C9, efficiently expressing the protein of CYP2C9, was established.展开更多
基金the National Natural Science Foundation of China,No.39830440
文摘AIM: To isolate a novel isoform of human HPO (HPO-205) from human fetal liver Marathon-ready cDNA and characterize its primary biological function. METHODS: 5'-RACE (rapid amplification of cDNA 5' ends) was used to isolate a novel isoform of hHPO in this paper. The constructed pcDNA(HPO-205), pcDNA(HPO) and pcDNA eukaryotic expression vectors were respectively transfected by lipofectamine method and the stimulation of DNA synthesis was observed by (3)H-TdR incorporation assay. Proteins extracted from different cells were analyzed by Western blot. RESULTS: A novel isoform of hHPO (HPO-205) encoding a 205 amino acid ORF corresponding to a translated production of 23 kDa was isolated and distinguished from the previous HPO that lacked the N-terminal 80 amino acids. The dose-dependent stimulation of DNA synthesis of HepG2 hepatoma cells by HPO-205 demonstrated its similar biological activity with HPO in vitro. The level of MAPK (Mitogen-activated protein kinase) phosphorylation by Western blot analysis revealed that HPO-205 might have the stronger activity of stimulating hepatic cell proliferation than that of HPO. CONCLUSION: A novel isoform of hHPO (HPO-205) was isolated from hepatic-derived cells. The comparison of HPO-205 and HPO will lead to a new insight into the structure and function of hHPO, and provide the new way of thinking to deeply elucidate the biological roles of HPO/ALR.
基金Supported by Cancer projects in the C télab are funded through the Cancer Research Society,Canadian Research Institutes of Health Research and Canadian Breast Cancer Foundation
文摘Protein arginine methyltransferases(PRMTs) catalyze the methylation of a variety of protein substrates, many of which have been linked to the development, progression and aggressiveness of different types of cancer. Moreover, aberrant expression of PRMTs has been observed in several cancer types. While the link between PRMTs and cancer is a relatively new area of interest, the functional implications documented thus far warrant further investigations into its therapeutic potential. However, the expression of these enzymes and the regulation of their activity in cancer are still significantly understudied. Currently there are nine main members of the PRMT family. Further, the existence of alternatively spliced isoforms for several of these family members provides an additional layer of complexity. Specifically, PRMT1, PRMT2, CARM1 and PRMT7 have been shown to have alternative isoforms and others may be currently unrealized. Our knowledge with respect to the relative expression and the specific functions of these isoforms is largely lacking and needs attention. Here we present a review of the current knowledge of theknown alternative PRMT isoforms and provide a rationale for how they may impact on cancer and represent potentially useful targets for the development of novel therapeutic strategies.
基金the NNSF of China (No.39970872,No.30772587)the Natural Science Foundation of Fujian Province (C97052,C0510012)+1 种基金Special Fund of Fujian Development and Reform Commissionthe National Science Foundation of USA
文摘β-Trichosanthin, a type 1 ribosome-inactivating protein (RIP) isolated from the root tuber of Trichosanthe kirilowii Maxim, is an isoform of trichosanthin. Here we report its crystallization in two crystal forms using the hanging-drop vapor-diffusion method. The form A and form B crystals belong to the orthorhombic space group P212121 and monoclinic space group P21, respectively. X-ray data have been collected to 1.6 and 1.2 A resolution for form A and form B crystals, respectively, using a synchrotron source.
文摘This review article discusses dimensional reconstruction of alternative splicing that not only affects primarily the distributional dimensions of isoforms of various protein species but especially influences the nature of interactivity events between various protein species and also the structure of the given protein molecules. In such terms, disorders of differentiation of individual tumors and of tumor types and subtypes would correlate with distinctive dimensions of expression of a limited number of genes in various modes of expressed selectivity programs. In particular, the differentiation programs of normal tissues would correlate with combinatorial systems of splicing factors and of auxiliary factors in the development of patterns of gene expression. The significance of mis-splicing events is consonant with the wide range of phenotypic expression of neoplastic lesions and in the great variety of differentiation patterns and also of the variable degrees of differentiation of various components of a given neoplasm. The structure of given protein isoforms resulting from alternative splicing correlate with the sequence context of exons in the enhancement or inhibition of splicing events and would also influence pathobiologic behavior patterns of given neoplastic lesions. The development of abnormal cell signalling pathways and of interactivity patterns in a combinatorial way would directly influence the stability and trafficking dynamics of given protein molecular species in inducing an abundance of protein isoform production. Series of multi-component systems ranging from receptivity to consequential pathways of development of differential phenotype would allow for a high degree of modulatory effect within systems implicating in particular the interactions of individual tumor cells with each other and with the matrix components. It is within the context of constitutive versus alternative splicing events that this review article proposes that proportional recreation of differentiation pathways promotes a self-progression of the pathobiologic processes of a given neoplastic lesion.
基金National Natural Science Foundation of China,No.39770868Natural Science Foundation of Zhejiang Province,No.397490
文摘AIM: Using bacterial, yeast, or mammalian cell expressing a human drug metabolism enzyme would seem good way to study drug metabolism-related problems. Human cytochrome P-450 2C9(CYP2C9) is a polymorphic enzyme responsible for the metabolism of a large number of clinically important drugs. It ranks among the most important drug metabolizing enzymes in humans. In order to provide a sufficient amount of the enzyme for drug metabolic research, the CYP2C9 cDNA was cloned and expressed stably in CHL cells. METHODS: After extraction of total RNA from human liver tissue, the human CYP2C9 cDNA was amplified with reverse transcription-polymerase chain reaction (RT-PCR), and cloned into cloning vector pGEM-T. The cDNA fragment was identified by DNA sequencing and subcloned into a mammalian expression vector pREP9. A transgenic cell line was established by transfecting the recombinant vector of pREP9-CYP2C9 into CHL cells. The enzyme activity of CYP2C9 catalyzing oxidation of tolbutamide to hydroxy tolbutamide in S9 fraction of the cell was determined by high performance liquid chromatography(HPLC). RESULTS: The amino acid sequence predicted from the cDNA segment was identical to that of CYP2C9*1, the wild type CYP2C9. However, there were two base differences, i.e. 21T】C, 1146C】T, but the encoding amino acid sequence was the same, L7, P382. The S9 fraction of the established cell line metabolizes tolbutamide to hydroxy tolbutamide; tolbutamide hydroxylase activity was found to be 0.465 +/- 0.109 micromol.min(-1).g(-1) S9 protein or 8.62 +/- 2.02mol.min(-1).mol(-1) CYP, but was undetectable in parental CHL cell. CONCLUSION: The cDNA of human CYP2C9 was successfully cloned and a cell line of CHL- CYP2C9, efficiently expressing the protein of CYP2C9, was established.