BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta...BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.展开更多
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect...BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.展开更多
BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(...BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(ER)stress is one of the signaling pathways that induce apoptosis.Moreover,the protein kinase RNA-like endoplasmic reticulum kinase(PERK)-induced apoptotic pathway is the main way;but its role in liver injury remains unclear.Yinchenhao decoction(YCHD)is a traditional Chinese medicine formula that alleviates liver injury and apoptosis,yet its mechanism is unknown.We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice(OJ).AIM To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein(CHOP)-growth arrest and DNA damage-inducible protein 34(GADD34)pathway and B cell lymphoma/leukemia-2 related X protein(Bax)/B cell lymphoma/leukemia-2(Bcl-2)ratio.METHODS For in vivo experiments,30 rats were divided into three groups:control group,OJ model group,and YCHD-treated group.Blood was collected to detect the indicators of liver function,and liver tissues were used for histological analysis.For in vitro experiments,30 rats were divided into three groups:G1,G2,and G3.The rats in group G1 had their bile duct exposed without ligation,the rats in group G2 underwent total bile duct ligation,and the rats in group G3 were given a gavage of YCHD.According to the serum pharmacology,serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells.Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling(TUNEL)assay was used to detect BRL-3A hepatocyte apoptosis.Alanine aminotransferase(ALT)and aspartate transaminase(AST)levels in the medium were detected.Western blot and quantitative real-time polymerase chain reaction(qRT-PCR)analyses were used to detect protein and gene expression levels of PERK,CHOP,GADD34,Bax,and Bcl-2 in the liver tissues and BRL-3A cells.RESULTS Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group.The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ.Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ.Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK,CHOP,and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ.The Bax and Bcl-2 levels were increased,and the Bax/Bcl-2 ratio was also increased.When YCHD was used,the PERK,CHOP,GADD34,and Bax levels quickly decreased,while the Bcl-2 levels increased,and the Bax/Bcl-2 ratio decreased.CONCLUSION OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio.YCHD can attenuate these changes.展开更多
The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for ...The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for 60 min followed by reperfusion for 24 h. Eighteen male C57BL/6 mice were randomly divided into three groups: sham-operated group(sham), IRI+saline group(IRI group), IRI+Fenofibrate(FEN) group. Normal saline or Fenofibrate(3 mg/kg) was intravenously injected 60 min before renal ischemia in IRI group and FEN group, respectively. Blood samples and renal tissues were collected at the end of reperfusion. The renal function, histopathologic changes, and the expression levels of pro-inflammatory cytokines [interleukin-8(IL-8), tumor necrosis factor alpha(TNF-α) and IL-6] in serum and renal tissue homogenate were assessed. Moreover, the effects of Fenofibrate on activating phosphoinositide 3 kinase/protein kinase B(PI3K/Akt) signaling and peroxisome proliferator-activated receptor-α(PPAR-α) were also measured in renal IRI. The results showed that plasma levels of blood urea nitrogen and creatinine, histopathologic scores and the expression levels of TNF-α, IL-8 and IL-6 were significantly lower in FEN group than in IRI group. Moreover, Fenofibrate pretreatment could further induce PI3K/Akt signal pathway and PPAR-α activation following renal IRI. These findings indicated PPAR-α activation by Fenofibrate exerts protective effects on renal IRI in mice by suppressing inflammation via PI3K/Akt activation. Thus, Fenofibrate could be a novel therapeutic alternative in renal IRI.展开更多
BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many c...BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.展开更多
AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal...AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal cancer(CRC) cells. METHODS: Quantitative real-time p CR(q RT-p CR) and Western blot were used to detect the expression levels of mi R-21 and p TEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of p TEN m RNA and its downstream proteins AKT and p I3 K in HCT116 cells after downregulating mi R-21 were investigated. RESULTS: Comparing the mi R-21 expression in CRC cells, the expression levels of mi R-21 were highest in HCT116 cells, and the expression levels of mi R-21 were lowest in SW480 cells. In comparing mi R-21 and p TEN expression in CRC cells, we found that the protein expression levels of mi R-21 and p TEN were inversely correlated(p < 0.05); when mi R-21 expression was reduced, m RNA expression levels of p TEN did not significantly change(p > 0.05), but the expression levels of its protein significantly increased(p < 0.05). In comparing the levels of p TEN protein and downstream AKT and p I3 K in HCT116 cells after downregulation of mi R-21 expression, the levels of AKT and p I3 K protein expression significantly decreased(p < 0.05). CONCLUSION: p TEN is one of the direct target genesof mi R-21. Thus, phosphatase gene and its downstream AKT and p I3 K expression levels can be regulated by regulating the expression levels of mi R-21, which in turn regulates the development of CRC.展开更多
Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate ...Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate various apoptotic cascades. JNK and p38 promote apoptosis, but Akt protects against apoptosis, in hippocampal neurons. However, changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood. Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group (P 〈 0.05). No significant difference in JNK phosphorylation levels was detected in the rat cerebral cortex between stress and control groups, and no significant difference in Akt and p38 phosphorylation levels was detected in the rat hippocampus and cerebral cortex between stress and control groups (P 〉 0.05). These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression.展开更多
BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stabl...BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stable degradation product widely used in daily life and production and has been proven to affect male fertility.However,the underlying mechanisms therein are unclear.Thus,it is necessary to study the effect and mechanism of NP on spermatogonial stem cells(SSCs).AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)pathway.METHODS SSCs were treated with NP at 0,10,20 or 30μmol.MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs.Flow cytometry was conducted to measure SSC apoptosis.The expression of Bad,Bcl-2,cytochrome-c,pro-Caspase 9,SOX-2,OCT-4,Nanog,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot,and the mRNA expression of SOX-2,OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.RESULTS Compared with untreated cells(0μmol NP),SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2,Nanog,OCT-4,SOX-2,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,and PLZF(P<0.05),whereas the expression of Bad,cytochrome-c,and pro-Caspase 9 increased significantly(P<0.05).We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K,AKT,mTORC1,and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs(P<0.05).NP exerted the greatest effect at 30μmol among all NP concentrations.CONCLUSION NP attenuated the proliferation,differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress.The associated mechanism may be related to the PI3K/AKT/mTOR pathway.展开更多
AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP...AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP) was measured directly via catheters placed in the portal vein tract. The level of endothelin-1 (ET-1) in the mesenteric circulation was determined by radioimmunoassay, and the expression of the endothelin A receptor (ETAR) and endothelin B receptor (ETBR) was assessed by immunofluorescence and Western blot. Additionally, expression of G protein coupled kinase-2 (GRK2) and β-arrestin 2, which influence endothelin receptor sensitivity, were also studied by Western blot. RESULTS: PP of CBDL rats increased significantly (11.89 ± 1.38 mmHg vs 16.34 ± 1.63 mmHg). ET-1 expression decreased in the mesenteric circulation 2 and 4 wk after CBDL. ET-1 levels in the systemic circulation of CBDL rats were increased at 2 wk and decreased at 4 wk. There was no change in ETAR expression in response to CBDL; however, increased expression of ETBR in the endothelial cells of mesenteric arterioles and capillaries was observed. In sham-operated rats, ETBR was mainly expressed in the CD31+ endothelial cells of the arterioles. With development of PHT, in addition to the endothelial cells, ETBR expression was noticeably detectable in the SMA+ smooth muscle cells of arterioles and in the CD31+ capillaries. Following CBDL, increased expression of GRK2 was also found in mesenteric tissue, though there was no change in the level of β-arrestin 2. CONCLUSION: Decreased levels of ET-1 and increased ETBR expression in the mesenteric circulation following CBDL in rats may underlie mesenteric vasodilation in individuals with PHT. Mechanistically, increased GRK2 expression may lead to desensitization of ETAR, as well as other vasoconstrictors, promoting this vasodilatory effect.展开更多
Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/ph...Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process. Western blot analysis demonstrated that telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid, while they were expressed in PAJU cells transfected with a telencephalin expression plasmid. After treatment with 1.0 nM amyloid beta protein 42, expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished, while levels of phosphorylated ezrin/radixin/moesin increased. In addition, the high levels of telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.展开更多
Since we had previously demonstrated that siRNAs to tristetraprolin (TTP) markedly inhibited insulin stimulation of hepatic HMG-CoA reductase (HMGR) transcription, we investigated the effects of transfecting rat liver...Since we had previously demonstrated that siRNAs to tristetraprolin (TTP) markedly inhibited insulin stimulation of hepatic HMG-CoA reductase (HMGR) transcription, we investigated the effects of transfecting rat liver with TTP constructs. We found that transfecting diabetic rats with TTP did not increase HMGR transcription but rather led to modest inhibition. We then investigated whether co-transfection with protein kinase B, hepatic form (AKT2), might lead to phosphorylation and result in activation of HMGR transcription. We found that this treatment resulted in near complete inhibition of transcription. Transfection with peroxisome proliferator-activated receptor g coactivator (PGC-1a) also inhibited HMGR transcription. These results show that although TTP is needed for activation of HMGR transcription, it cannot by itself activate this process. AKT2 and PGC-1a, which mediate the activation of gluconeogenic genes by insulin, exert the opposite effect on HMGR.展开更多
Background:Diabetic cataract is a common complication and a lens disorder in diabetes.Moreover,Dendrobium officinale polysaccharide(DOP)is found to alleviate diabetes complications.Consequently,microRNA-125b and mitog...Background:Diabetic cataract is a common complication and a lens disorder in diabetes.Moreover,Dendrobium officinale polysaccharide(DOP)is found to alleviate diabetes complications.Consequently,microRNA-125b and mitogen-activated protein kinase signaling pathways play significant roles in diabetes.However,the mechanism and the effect of DOP on diabetic cataract remains unknown.Methods:Wistar male rats were randomly assigned to the control,model,and DOP groups.Diabetes was induced with streptozotocin.Furthermore,DOP was orally given for 12 weeks.The Lens Opacities Classification System III was used to evaluate lens opacity by slit-lamp microscope.The lens was then harvested for testing the mRNA expression of microRNA-125b,ERK1,ERK2,Raf and Ras using reverse transcription-polymerase chain reaction.The protein expression of ERK1,ERK2,Raf,and Ras was detected using the Western blot analysis.The targets of microRNA-125b were predicted in miRWalk 2.0.These targets were obtained from the Kyoto Encyclopedia of Genes and Genomes pathway.Results:The lens opacities of the rats in the control group were almost at C0N0.Moreover,the majority of the lens opacities in the model group were C3 to C4 and N1 to N2,and were mostly at C1 to C2 and N0 to N1 in the DOP group.The difference was statistically significant(P<0.05).Furthermore,the microRNA-125b expression in the model group is significantly higher compared with the control group.Conversely,the microRNA-125b expression in the DOP group is significantly decreased(all P<0.05).The mRNA expression of ERK1,ERK2,Raf,and Ras in the model groups were upregulated compared with those of the control group.However,the ERK1 and Raf mRNA expressions of the DOP group were lower compared with the model group(all P<0.05).The protein expression of ERK1,Raf,and Ras in the model group was significantly increased compared with those of the control group.The protein expression of ERK1,Raf,and Ras in the DOP group was significantly lower compared with the model group(all P<0.05).Moreover,3,378 genes of the microRNA-125b target were gained from the miRWalk.After Kyoto Encyclopedia of Genes and Genomes pathways analysis in Gene Set Enrichment Analysis,246 items were gained including Ras(rno04014)and mitogen-activated protein kinase(rno04010)signaling pathways.A positive correlation exists between microRNA-125b and mRNA expression of ERK1,ERK2,Raf and Ras(r=0.940,0.841,0.666,and 0.768;all P<0.05).Conclusion:DOP can alleviate the severity of the opacity of the lens in diabetic cataract rats via microRNA-125b and mitogen-activated protein kinase signaling pathways.Thus,microRNA-125b has something to do with the mitogen-activated protein kinase signaling pathway.展开更多
To explore the role of nuclear factor-κB(NF-κB) in the signal pathway of protein kinase C (PKC) regulating the proliferation and apoptosis of T lymphocytes in asthma. T lymphocytes were isolated from the asthmatic m...To explore the role of nuclear factor-κB(NF-κB) in the signal pathway of protein kinase C (PKC) regulating the proliferation and apoptosis of T lymphocytes in asthma. T lymphocytes were isolated from the asthmatic model of guinea pigs and the asthmatic patients. Either the T cells stimulated with PMA alone or those stimulated with PMA together with pyrrolidine dithiocarbamate (PDTC) were incubated for 1 and 24?h. The proliferation of and the presence of NF-κB in the cells incubated for 1?h were observed by MTT and immunohistochemical staining, respectively. And the cells incubated for 24?h were observed for the apoptosis by TUNEL. All the assays were paralleled with controls, and all the data were analyzedstatistically with the software SAS. The percentage of cells of nuclear positive staining of NF-κB and the proliferation of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated with PMA were significantly higher than those of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated without PMA respectively (P<0.01) and those of T lymphocytes from normal control guinea pigs and normal control persons stimulated with PMA respectively (P<0.01), and were significantly reduced by PDTC (P<0.01). The apoptosis index of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated with PMA were significantly lower than those of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated without PMA respectively (P<0.01) and those of T lymphocytes from normal control guinea pigs and normal control persons stimulated with PMA respectively (P<0.01), and were significantly induced by PDTC (P<0.01). There were good positive correlation between the percentage of cells of nuclear staining of NF-κB of T lymphocytes and the proliferation of T lymphocytes (r=0.51-0.72, P<0.001), and also good negative correlation between the percentage of cells of nuclear staining of NF-κB and the apoptosis index of T lymphocytes (r=-0.55-0.71, P<0.001, respectively). It concludes that the active PKC of asthmatic T lymphocytes promoting the proliferation and inhibiting the apoptosis of T lymphocytes may be mediated by activating NF-κB, the activation of PKC-NF-κB signal pathway of T lymphocytes NF-κB may play an important role in the pathogenesis of asthma.展开更多
BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhi...BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhibitor Wortmannin in SAP associated with ALI.METHODS: Ninety rats were randomly divided into three groups: sham operation(SO) group(n=30), SAP group(n=30), and SAP+Wortmannin(SAP+W) group(n=30). SAP model was induced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct of rats. The rate of lung water content, myeloperoxidase(MPO), matrix metalloproteinase 9(MMP-9), protein kinase B(PKB), abdphosphorylation of protein kinase B(P-PKB) activity in the lung tissue were evaluated.RESULTS: In the SAP group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours(P<0.05); the rate of lung water content, MPO and TNF-α activity were also gradually increased, and the degree of lung lesion gradually increased(P<0.05). In the SAP+Wortmannin group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours; it was higher than that in the SO group(P<0.05), but significantly lower than that in the SAP group(P<0.05). The rest indicators in the SAP+Wortmannin group were also significantly decreased as compared with the SAP group(P<0.05).CONCLUSIONS: The expression of phosphatidylinositol-3 kinase/protein kinase B was elevated in severe pancreatitis rats with lung injury. This suggested that PI3 K signal transduction pathway is involved in the control and release of proinfl ammatory cytokines TNF-α, which may play an important role in the pathogenesis of severe acute pancreatitis associated with lung injury. This finding indicated that Wortmannin can block the PI3 K signal transduction pathway, and inhibit the release of infl ammatory factor TNF-α.展开更多
基金Supported by National Natural Science Foundation of China,No.81760516Natural Science Foundation of Guangxi,China,No.2019GXNSFAA185030+1 种基金Self-Financed Scientific Research Projects of Guangxi Zhuang Autonomous Region Health and Family Planning Commission,China,No.Z20181003Guangxi Medical University Youth Science Fund Project,China,No.GXMUYSF202221.
文摘BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
文摘BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC.
基金Supported by the National Natural Science Foundation of China,No.81273952
文摘BACKGROUND Chronic biliary obstruction results in ischemia and hypoxia of hepatocytes,and leads to apoptosis.Apoptosis is very important in regulating the homeostasis of the hepatobiliary system.Endoplasmic reticulum(ER)stress is one of the signaling pathways that induce apoptosis.Moreover,the protein kinase RNA-like endoplasmic reticulum kinase(PERK)-induced apoptotic pathway is the main way;but its role in liver injury remains unclear.Yinchenhao decoction(YCHD)is a traditional Chinese medicine formula that alleviates liver injury and apoptosis,yet its mechanism is unknown.We undertook this study to investigate the effects of YCHD on the expression of ER stress proteins and hepatocyte apoptosis in rats with obstructive jaundice(OJ).AIM To investigate whether YCHD can attenuate OJ-induced liver injury and hepatocyte apoptosis by inhibiting the PERK-CCAAT/enhancer-binding protein homologous protein(CHOP)-growth arrest and DNA damage-inducible protein 34(GADD34)pathway and B cell lymphoma/leukemia-2 related X protein(Bax)/B cell lymphoma/leukemia-2(Bcl-2)ratio.METHODS For in vivo experiments,30 rats were divided into three groups:control group,OJ model group,and YCHD-treated group.Blood was collected to detect the indicators of liver function,and liver tissues were used for histological analysis.For in vitro experiments,30 rats were divided into three groups:G1,G2,and G3.The rats in group G1 had their bile duct exposed without ligation,the rats in group G2 underwent total bile duct ligation,and the rats in group G3 were given a gavage of YCHD.According to the serum pharmacology,serum was extracted and centrifuged from the rat blood to cultivate the BRL-3A cells.Terminal deoxynucleotidyl transferase mediated dUTP nick end-labelling(TUNEL)assay was used to detect BRL-3A hepatocyte apoptosis.Alanine aminotransferase(ALT)and aspartate transaminase(AST)levels in the medium were detected.Western blot and quantitative real-time polymerase chain reaction(qRT-PCR)analyses were used to detect protein and gene expression levels of PERK,CHOP,GADD34,Bax,and Bcl-2 in the liver tissues and BRL-3A cells.RESULTS Biochemical assays and haematoxylin and eosin staining suggested severe liver function injury and liver tissue structure damage in the OJ model group.The TUNEL assay showed that massive BRL-3A rat hepatocyte apoptosis was induced by OJ.Elevated ALT and AST levels in the medium also demonstrated that hepatocytes could be destroyed by OJ.Western blot or qRT-PCR analyses showed that the protein and mRNA expression levels of PERK,CHOP,and GADD34 were significantly increased both in the rat liver tissue and BRL-3A rat hepatocytes by OJ.The Bax and Bcl-2 levels were increased,and the Bax/Bcl-2 ratio was also increased.When YCHD was used,the PERK,CHOP,GADD34,and Bax levels quickly decreased,while the Bcl-2 levels increased,and the Bax/Bcl-2 ratio decreased.CONCLUSION OJ-induced liver injury and hepatocyte apoptosis are associated with the activation of the PERK-CHOP-GADD34 pathway and increased Bax/Bcl-2 ratio.YCHD can attenuate these changes.
基金supported by the National Natural Science Foundation of China(No.81070557)
文摘The aim of this study was to investigate the possible beneficial effects of Fenofibrate on renal ischemia-reperfusion injury(IRI) in mice and its potential mechanism. IRI was induced by bilateral renal ischemia for 60 min followed by reperfusion for 24 h. Eighteen male C57BL/6 mice were randomly divided into three groups: sham-operated group(sham), IRI+saline group(IRI group), IRI+Fenofibrate(FEN) group. Normal saline or Fenofibrate(3 mg/kg) was intravenously injected 60 min before renal ischemia in IRI group and FEN group, respectively. Blood samples and renal tissues were collected at the end of reperfusion. The renal function, histopathologic changes, and the expression levels of pro-inflammatory cytokines [interleukin-8(IL-8), tumor necrosis factor alpha(TNF-α) and IL-6] in serum and renal tissue homogenate were assessed. Moreover, the effects of Fenofibrate on activating phosphoinositide 3 kinase/protein kinase B(PI3K/Akt) signaling and peroxisome proliferator-activated receptor-α(PPAR-α) were also measured in renal IRI. The results showed that plasma levels of blood urea nitrogen and creatinine, histopathologic scores and the expression levels of TNF-α, IL-8 and IL-6 were significantly lower in FEN group than in IRI group. Moreover, Fenofibrate pretreatment could further induce PI3K/Akt signal pathway and PPAR-α activation following renal IRI. These findings indicated PPAR-α activation by Fenofibrate exerts protective effects on renal IRI in mice by suppressing inflammation via PI3K/Akt activation. Thus, Fenofibrate could be a novel therapeutic alternative in renal IRI.
基金National Natural Science Foundation of China,No.81704059Scientific Research Project of Hebei Province Traditional Chinese Medicine Administration,No.2017130。
文摘BACKGROUND Intestinal inflammation is a common digestive tract disease, which is usually treated with hormone medicines. Hormone medicines are effective to some extent, but long-term use of them may bring about many complications.AIM To explore the protective effects of panax notoginseng saponin(PNS) against dextran sulfate sodium(DSS)-induced intestinal inflammatory injury through phosphoinositide-3-kinase protein kinase B(PI3K/AKT) signaling pathway inhibition in rats.METHODS Colitis rat models were generated via DSS induction, and rats were divided into control(no modeling), DSS, DSS + PNS 50 mg/k, and DSS + PNS 100 mg/kg groups. Then, the intestinal injury, oxidative stress parameters, inflammatory indices, tight junction proteins, apoptosis, macrophage polarization, and TLR4/AKT signaling pathway in colon tissues from rats in each of the groups were detected. The PI3 K/AKT signaling pathway in the colon tissue of rats was blocked using the PI3K/AKT signaling pathway inhibitor, LY294002.RESULTS Compared with rats in the control group, rats in the DSS group showed significantly shortened colon lengths, and significantly increased disease activity indices, oxidative stress reactions and inflammatory indices, as well as significantly decreased expression of tight junction-associated proteins. In addition, the DSS group showed significantly increased apoptotic cell numbers,and showed significantly increased M1 macrophages in spleen and colon tissues.They also showed significantly decreased M2 macrophages in colon tissues, as well as activation of the PI3K/AKT signaling pathway(all P < 0.05). Compared with rats in the DSS group, rats in the DSS + PNS group showed significantly lengthened colon lengths, decreased disease activity indices, and significantly alleviated oxidative stress reactions and inflammatory responses. In addition, this group showed significantly increased expression of tight junction-associated proteins, significantly decreased apoptotic cell numbers, and significantly decreased M1 macrophages in spleen and colon tissues. This group further showed significantly increased M2 macrophages in colon tissues, and significantly suppressed activation of the PI3K/AKT signaling pathway, as well as a dose dependency(all P < 0.05). When the PI3K/AKT signaling pathway was inhibited, the apoptosis rate of colon tissue cells in the DSS + LY294002 group was significantly lower than that of the DSS group(P < 0.05).CONCLUSION PNS can protect rats against DSS-induced intestinal inflammatory injury by inhibiting the PI3K/AKT signaling pathway, and therefore may be potentially used in the future as a drug for colitis.
文摘AIM: To explore the regulatory mechanism of the target gene of micro RNA-21(mi R-21), phosphatase gene(p TEN), and its downstream proteins, protein kinase B(AKT) and phosphatidylinositol 3-kinase(p I3K), in colorectal cancer(CRC) cells. METHODS: Quantitative real-time p CR(q RT-p CR) and Western blot were used to detect the expression levels of mi R-21 and p TEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of p TEN m RNA and its downstream proteins AKT and p I3 K in HCT116 cells after downregulating mi R-21 were investigated. RESULTS: Comparing the mi R-21 expression in CRC cells, the expression levels of mi R-21 were highest in HCT116 cells, and the expression levels of mi R-21 were lowest in SW480 cells. In comparing mi R-21 and p TEN expression in CRC cells, we found that the protein expression levels of mi R-21 and p TEN were inversely correlated(p < 0.05); when mi R-21 expression was reduced, m RNA expression levels of p TEN did not significantly change(p > 0.05), but the expression levels of its protein significantly increased(p < 0.05). In comparing the levels of p TEN protein and downstream AKT and p I3 K in HCT116 cells after downregulation of mi R-21 expression, the levels of AKT and p I3 K protein expression significantly decreased(p < 0.05). CONCLUSION: p TEN is one of the direct target genesof mi R-21. Thus, phosphatase gene and its downstream AKT and p I3 K expression levels can be regulated by regulating the expression levels of mi R-21, which in turn regulates the development of CRC.
基金the General Program of National Natural Science Foundation of China, No.90709034
文摘Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate various apoptotic cascades. JNK and p38 promote apoptosis, but Akt protects against apoptosis, in hippocampal neurons. However, changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood. Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group (P 〈 0.05). No significant difference in JNK phosphorylation levels was detected in the rat cerebral cortex between stress and control groups, and no significant difference in Akt and p38 phosphorylation levels was detected in the rat hippocampus and cerebral cortex between stress and control groups (P 〉 0.05). These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression.
基金Health and Family Planning Committee Joint Fund Project of Hubei Province,No.WJ2018H0020Fundamental Research Funds for the Central Universities,No.2042016kf0187 and No.2042017kf0068Zhongnan Hospital of Wuhan University Science,Technology and Innovation Seed Fund,No.znpy2016022.
文摘BACKGROUND With continuous advancement of industrial society,environmental pollution has become more and more serious.There has been an increase in infertility caused by environmental factors.Nonylphenol(NP)is a stable degradation product widely used in daily life and production and has been proven to affect male fertility.However,the underlying mechanisms therein are unclear.Thus,it is necessary to study the effect and mechanism of NP on spermatogonial stem cells(SSCs).AIM To investigate the cytotoxic effect of NP on SSCs via the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/AKT/mTOR)pathway.METHODS SSCs were treated with NP at 0,10,20 or 30μmol.MTT assay was performed to evaluate the effect of NP on the proliferation of SSCs.Flow cytometry was conducted to measure SSC apoptosis.The expression of Bad,Bcl-2,cytochrome-c,pro-Caspase 9,SOX-2,OCT-4,Nanog,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,PLZF and PI3K/AKT/mTOR-related proteins was observed by western blot,and the mRNA expression of SOX-2,OCT-4 and Nanog was detected by quantitative reverse transcription polymerase chain reaction.RESULTS Compared with untreated cells(0μmol NP),SSCs treated with NP at all concentrations showed a decrease in cell proliferation and expression of Bcl-2,Nanog,OCT-4,SOX-2,Nanos3,Stra8,Scp3,GFRα1,CD90,VASA,Nanos2,KIT,and PLZF(P<0.05),whereas the expression of Bad,cytochrome-c,and pro-Caspase 9 increased significantly(P<0.05).We further examined the PI3K/AKT/mTOR pathway and found that the phosphorylation of PI3K,AKT,mTORC1,and S6K was significantly decreased by NP at all concentrations compared to that in untreated SSCs(P<0.05).NP exerted the greatest effect at 30μmol among all NP concentrations.CONCLUSION NP attenuated the proliferation,differentiation and stemness maintenance of SSCs while promoting apoptosis and oxidative stress.The associated mechanism may be related to the PI3K/AKT/mTOR pathway.
基金Supported by Grant from National Key New Drug Creation Project of China, No. 2009ZX09102
文摘AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling. METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP) was measured directly via catheters placed in the portal vein tract. The level of endothelin-1 (ET-1) in the mesenteric circulation was determined by radioimmunoassay, and the expression of the endothelin A receptor (ETAR) and endothelin B receptor (ETBR) was assessed by immunofluorescence and Western blot. Additionally, expression of G protein coupled kinase-2 (GRK2) and β-arrestin 2, which influence endothelin receptor sensitivity, were also studied by Western blot. RESULTS: PP of CBDL rats increased significantly (11.89 ± 1.38 mmHg vs 16.34 ± 1.63 mmHg). ET-1 expression decreased in the mesenteric circulation 2 and 4 wk after CBDL. ET-1 levels in the systemic circulation of CBDL rats were increased at 2 wk and decreased at 4 wk. There was no change in ETAR expression in response to CBDL; however, increased expression of ETBR in the endothelial cells of mesenteric arterioles and capillaries was observed. In sham-operated rats, ETBR was mainly expressed in the CD31+ endothelial cells of the arterioles. With development of PHT, in addition to the endothelial cells, ETBR expression was noticeably detectable in the SMA+ smooth muscle cells of arterioles and in the CD31+ capillaries. Following CBDL, increased expression of GRK2 was also found in mesenteric tissue, though there was no change in the level of β-arrestin 2. CONCLUSION: Decreased levels of ET-1 and increased ETBR expression in the mesenteric circulation following CBDL in rats may underlie mesenteric vasodilation in individuals with PHT. Mechanistically, increased GRK2 expression may lead to desensitization of ETAR, as well as other vasoconstrictors, promoting this vasodilatory effect.
基金supported by a grant under Key Projects of Guangxi Traditional Chinese Medical University, No.ZD2007041
文摘Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU. In this study, we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process. Western blot analysis demonstrated that telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid, while they were expressed in PAJU cells transfected with a telencephalin expression plasmid. After treatment with 1.0 nM amyloid beta protein 42, expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished, while levels of phosphorylated ezrin/radixin/moesin increased. In addition, the high levels of telencephalin, phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002. These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.
文摘Since we had previously demonstrated that siRNAs to tristetraprolin (TTP) markedly inhibited insulin stimulation of hepatic HMG-CoA reductase (HMGR) transcription, we investigated the effects of transfecting rat liver with TTP constructs. We found that transfecting diabetic rats with TTP did not increase HMGR transcription but rather led to modest inhibition. We then investigated whether co-transfection with protein kinase B, hepatic form (AKT2), might lead to phosphorylation and result in activation of HMGR transcription. We found that this treatment resulted in near complete inhibition of transcription. Transfection with peroxisome proliferator-activated receptor g coactivator (PGC-1a) also inhibited HMGR transcription. These results show that although TTP is needed for activation of HMGR transcription, it cannot by itself activate this process. AKT2 and PGC-1a, which mediate the activation of gluconeogenic genes by insulin, exert the opposite effect on HMGR.
基金supported by Fujian Provincial Natural Science Foundation Project(No.2019J01483)Fujian Provincial Health and Health Commission Medical Innovation Project(No.2018-CXB-15)of China。
文摘Background:Diabetic cataract is a common complication and a lens disorder in diabetes.Moreover,Dendrobium officinale polysaccharide(DOP)is found to alleviate diabetes complications.Consequently,microRNA-125b and mitogen-activated protein kinase signaling pathways play significant roles in diabetes.However,the mechanism and the effect of DOP on diabetic cataract remains unknown.Methods:Wistar male rats were randomly assigned to the control,model,and DOP groups.Diabetes was induced with streptozotocin.Furthermore,DOP was orally given for 12 weeks.The Lens Opacities Classification System III was used to evaluate lens opacity by slit-lamp microscope.The lens was then harvested for testing the mRNA expression of microRNA-125b,ERK1,ERK2,Raf and Ras using reverse transcription-polymerase chain reaction.The protein expression of ERK1,ERK2,Raf,and Ras was detected using the Western blot analysis.The targets of microRNA-125b were predicted in miRWalk 2.0.These targets were obtained from the Kyoto Encyclopedia of Genes and Genomes pathway.Results:The lens opacities of the rats in the control group were almost at C0N0.Moreover,the majority of the lens opacities in the model group were C3 to C4 and N1 to N2,and were mostly at C1 to C2 and N0 to N1 in the DOP group.The difference was statistically significant(P<0.05).Furthermore,the microRNA-125b expression in the model group is significantly higher compared with the control group.Conversely,the microRNA-125b expression in the DOP group is significantly decreased(all P<0.05).The mRNA expression of ERK1,ERK2,Raf,and Ras in the model groups were upregulated compared with those of the control group.However,the ERK1 and Raf mRNA expressions of the DOP group were lower compared with the model group(all P<0.05).The protein expression of ERK1,Raf,and Ras in the model group was significantly increased compared with those of the control group.The protein expression of ERK1,Raf,and Ras in the DOP group was significantly lower compared with the model group(all P<0.05).Moreover,3,378 genes of the microRNA-125b target were gained from the miRWalk.After Kyoto Encyclopedia of Genes and Genomes pathways analysis in Gene Set Enrichment Analysis,246 items were gained including Ras(rno04014)and mitogen-activated protein kinase(rno04010)signaling pathways.A positive correlation exists between microRNA-125b and mRNA expression of ERK1,ERK2,Raf and Ras(r=0.940,0.841,0.666,and 0.768;all P<0.05).Conclusion:DOP can alleviate the severity of the opacity of the lens in diabetic cataract rats via microRNA-125b and mitogen-activated protein kinase signaling pathways.Thus,microRNA-125b has something to do with the mitogen-activated protein kinase signaling pathway.
文摘To explore the role of nuclear factor-κB(NF-κB) in the signal pathway of protein kinase C (PKC) regulating the proliferation and apoptosis of T lymphocytes in asthma. T lymphocytes were isolated from the asthmatic model of guinea pigs and the asthmatic patients. Either the T cells stimulated with PMA alone or those stimulated with PMA together with pyrrolidine dithiocarbamate (PDTC) were incubated for 1 and 24?h. The proliferation of and the presence of NF-κB in the cells incubated for 1?h were observed by MTT and immunohistochemical staining, respectively. And the cells incubated for 24?h were observed for the apoptosis by TUNEL. All the assays were paralleled with controls, and all the data were analyzedstatistically with the software SAS. The percentage of cells of nuclear positive staining of NF-κB and the proliferation of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated with PMA were significantly higher than those of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated without PMA respectively (P<0.01) and those of T lymphocytes from normal control guinea pigs and normal control persons stimulated with PMA respectively (P<0.01), and were significantly reduced by PDTC (P<0.01). The apoptosis index of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated with PMA were significantly lower than those of T lymphocytes from asthmatic guinea pigs and asthmatic patients stimulated without PMA respectively (P<0.01) and those of T lymphocytes from normal control guinea pigs and normal control persons stimulated with PMA respectively (P<0.01), and were significantly induced by PDTC (P<0.01). There were good positive correlation between the percentage of cells of nuclear staining of NF-κB of T lymphocytes and the proliferation of T lymphocytes (r=0.51-0.72, P<0.001), and also good negative correlation between the percentage of cells of nuclear staining of NF-κB and the apoptosis index of T lymphocytes (r=-0.55-0.71, P<0.001, respectively). It concludes that the active PKC of asthmatic T lymphocytes promoting the proliferation and inhibiting the apoptosis of T lymphocytes may be mediated by activating NF-κB, the activation of PKC-NF-κB signal pathway of T lymphocytes NF-κB may play an important role in the pathogenesis of asthma.
文摘BACKGROUND: Acute lung injury(ALI) is a common and serious complication of severe acute pancreatitis(SAP). The study aimed to investigate the protective effect and mechanism of phosphatidylinositol-3 kinase(PI3K) inhibitor Wortmannin in SAP associated with ALI.METHODS: Ninety rats were randomly divided into three groups: sham operation(SO) group(n=30), SAP group(n=30), and SAP+Wortmannin(SAP+W) group(n=30). SAP model was induced by retrograde injection of 4% sodium taurocholate into the biliopancreatic duct of rats. The rate of lung water content, myeloperoxidase(MPO), matrix metalloproteinase 9(MMP-9), protein kinase B(PKB), abdphosphorylation of protein kinase B(P-PKB) activity in the lung tissue were evaluated.RESULTS: In the SAP group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours(P<0.05); the rate of lung water content, MPO and TNF-α activity were also gradually increased, and the degree of lung lesion gradually increased(P<0.05). In the SAP+Wortmannin group, the p-PKB expression in the lung tissue began to rise at 3 hours after modeling, and peaked at 12 hours; it was higher than that in the SO group(P<0.05), but significantly lower than that in the SAP group(P<0.05). The rest indicators in the SAP+Wortmannin group were also significantly decreased as compared with the SAP group(P<0.05).CONCLUSIONS: The expression of phosphatidylinositol-3 kinase/protein kinase B was elevated in severe pancreatitis rats with lung injury. This suggested that PI3 K signal transduction pathway is involved in the control and release of proinfl ammatory cytokines TNF-α, which may play an important role in the pathogenesis of severe acute pancreatitis associated with lung injury. This finding indicated that Wortmannin can block the PI3 K signal transduction pathway, and inhibit the release of infl ammatory factor TNF-α.