期刊文献+
共找到42,456篇文章
< 1 2 250 >
每页显示 20 50 100
Multiple subcellular localizations and functions of protein kinase Cδ in liver cancer
1
作者 Kohji Yamada Kiyotsugu Yoshida 《World Journal of Gastroenterology》 SCIE CAS 2022年第2期188-198,共11页
Protein kinase Cδ(PKCδ)is a member of the PKC family,and its implications have been reported in various biological and cancerous processes,including cell proliferation,cell death,tumor suppression,and tumor progress... Protein kinase Cδ(PKCδ)is a member of the PKC family,and its implications have been reported in various biological and cancerous processes,including cell proliferation,cell death,tumor suppression,and tumor progression.In liver cancer cells,accumulating reports show the bi-functional regulation of PKCδin cell death and survival.PKCδfunction is defined by various factors,such as phosphorylation,catalytic domain cleavage,and subcellular localization.PKCδhas multiple intracellular distribution patterns,ranging from the cytosol to the nucleus.We recently found a unique extracellular localization of PKCδin liver cancer and its growth factor-like function in liver cancer cells.In this review,we first discuss the structural features of PKCδand then focus on the functional diversity of PKCδbased on its subcellular localization,such as the nucleus,cell surface,and extracellular space.These findings improve our knowledge of PKCδinvolvement in the progression of liver cancer. 展开更多
关键词 protein kinase Liver cancer Subcellular localization Tumor suppression Tumor progression
下载PDF
RGS4 promotes the progression of gastric cancer through the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition
2
作者 Peng-Yu Chen Pei-Yao Wang +7 位作者 Bang Liu Yang-Pu Jia Zhao-Xiong Zhang Xin Liu Dao-Han Wang Yong-Jia Yan Wei-Hua Fu Feng Zhu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期113-127,共15页
BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progr... BACKGROUND Regulator of G protein signaling(RGS)proteins participate in tumor formation and metastasis by acting on theα-subunit of heterotrimeric G proteins.The speci-fic effect of RGS,particularly RGS4,on the progression of gastric cancer(GC)is not yet clear.AIM To explore the role and underlying mechanisms of action of RGS4 in GC develop-ment.METHODS The prognostic significance of RGS4 in GC was analyzed using bioinformatics based public databases and verified by immunohistochemistry and quantitative polymerase chain reaction in 90 patients with GC.Function assays were employed to assess the carcinogenic impact of RGS4,and the mechanism of its possible influence was detected by western blot analysis.A nude mouse xenograft model was established to study the effects of RGS4 on GC growth in vitro.RESULTS RGS4 was highly expressed in GC tissues compared with matched adjacent normal tissues.Elevated RGS4 expression was correlated with increased tumor-node-metastasis stage,increased tumor grade as well as poorer overall survival in patients with GC.Cell experiments demonstrated that RGS4 knockdown suppressed GC cell proliferation,migration and invasion.Similarly,xenograft experiments confirmed that RGS4 silencing significantly inhibited tumor growth.Moreover,RGS4 knockdown resulted in reduced phosphorylation levels of focal adhesion kinase,phosphatidyl-inositol-3-kinase,and protein kinase B,decreased vimentin and N-cadherin,and elevated E-cadherin.CONCLUSION High RGS4 expression in GC indicates a worse prognosis and RGS4 is a prognostic marker.RGS4 influences tumor progression via the focal adhesion kinase/phosphatidyl-inositol-3-kinase/protein kinase B pathway and epithelial-mesenchymal transition. 展开更多
关键词 Gastric cancer PROGNOSIS Regulator of G protein signaling 4 Focal adhesion kinase Epithelial-mesenchymal transition
下载PDF
Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway:a potential therapeutic approach for neurodegenerative diseases
3
作者 Fengcheng Deng Dan Yang +6 位作者 Lingxi Qing Yifei Chen Jilian Zou Meiling Jia Qian Wang Runda Jiang Lihua Huang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3095-3112,共18页
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh... The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases. 展开更多
关键词 cyclic adenosine monophosphate emotional disorders gut microbiota neurodegenerative diseases neurological diseases protein kinase A reciprocal regulation signaling pathway STRATEGY THERAPIES
下载PDF
Loss of monopolar spindle-binding protein 3B expression promotes colorectal cancer malignant behaviors by activation of target of rapamycin kinase/autophagy signaling
4
作者 Juan Sun Jin-Xiu Zhang +8 位作者 Meng-Shi Li Meng-Bin Qin Ruo-Xi Cheng Qing-Ru Wu Qiu-Ling Chen Dan Yang Cun Liao Shi-Quan Liu Jie-An Huang 《World Journal of Gastroenterology》 SCIE CAS 2024年第26期3229-3246,共18页
BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorecta... BACKGROUND Monopolar spindle-binding protein 3B(MOB3B)functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers.AIM To investigate the role of MOB3B in colorectal cancer(CRC).METHODS This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis.After overexpression and knockdown of MOB3B expression were induced in CRC cell lines,changes in cell viability,migration,invasion,and gene expression were assayed.Tumor cell autophagy was detected using transmission electron microscopy,while nude mouse xenograft experiments were performed to confirm the in-vitro results.RESULTS MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis.Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells,whereas knockdown of MOB3B expression had the opposite effects in CRC cells.At the molecular level,microtubule-associated protein light chain 3 II/I expression was elevated,whereas the expression of matrix metalloproteinase(MMP)2,MMP9,sequestosome 1,and phosphorylated mechanistic target of rapamycin kinase(mTOR)was downregulated in MOB3B-overexpressing RKO cells.In contrast,the opposite results were observed in tumor cells with MOB3B knockdown.The nude mouse data confirmed these in-vitro findings,i.e.,MOB3B expression suppressed CRC cell xenograft growth,whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts.CONCLUSION Loss of MOB3B expression promotes CRC development and malignant behaviors,suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling. 展开更多
关键词 colorectal cancer Monopolar spindle-binding protein 3B Mechanistic target of rapamycin kinase AUTOPHAGY Prognosis
下载PDF
Effects of invigorating-spleen and anticancer prescription on extracellular signal-regulated kinase/mitogen-activated protein kinase signaling pathway in colon cancer mice model
5
作者 Wei Wang Jing Wang +2 位作者 Xiu-Xiu Ren Hai-Long Yue Zheng Li 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第11期4468-4476,共9页
BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mai... BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins. 展开更多
关键词 colon cancer Invigorating-spleen and anticancer formula Extracellular signal-regulated kinase/mitogen-activated protein kinase signaling pathway Mice model c-MYc
下载PDF
Potential of ginsenoside Rg1 to treat aplastic anemia via mitogen activated protein kinase pathway in cyclophosphamide-induced myelosuppression mouse model
6
作者 See-Hyoung Park 《World Journal of Stem Cells》 SCIE 2024年第11期900-905,共6页
Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editor... Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editorial,we review and comment on an article by Wang et al published in 2024.This study aimed to evaluate the potential therapeutic benefits of ginsenoside Rg1 in AA,focusing on its protective effects and uncovering the underlying mechanisms.Cyclophosphamide(CTX)administration caused substantial damage to the structural integrity of the bone marrow and decreased the number of hematopoietic stem cells,thereby establishing an AA model.Compared with the AA group,ginsenoside Rg1 alleviated the effects of CTX by reducing apoptosis and inflammatory factors.Mechanistically,treatment with ginsenoside Rg1 significantly mitigated myelosuppression in mice by inhibiting the mitogen activated protein kinase signaling pathway.Thus,this study indicates that ginsenoside Rg1 could be effective in treating AA by reducing myelosuppression,primarily through its influence on the mitogen activated protein kinase signaling pathway.We expect that our review and comments will provide valuable insights for the scientific community related to this research and enhance the overall clarity of this article. 展开更多
关键词 Aplastic anemia cYcLOPHOSPHAMIDE Ginsenoside Rg1 Hematopoietic stem cells APOPTOSIS INFLAMMATION Mitogen activated protein kinase
下载PDF
Clinical significance of upregulated Rho GTPase activating protein 12 causing resistance to tyrosine kinase inhibitors in hepatocellular carcinoma
7
作者 Xiao-Wei Wang Yu-Xing Tang +11 位作者 Fu-Xi Li Jia-Le Wang Gao-Peng Yao Da-Tong Zeng Yu-Lu Tang Bang-Teng Chi Qin-Yan Su Lin-Qing Huang Di-Yuan Qin Gang Chen Zhen-Bo Feng Rong-Quan He 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第10期4244-4263,共20页
BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment fo... BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype. 展开更多
关键词 Hepatocellular carcinoma Focal adhesion Tyrosine kinase inhibitor Rho GTPase activating protein 12 Drug resistance Molecular mechanism BIOMARKER
下载PDF
Antagonistic Effects of N-acetylcysteine on Mitogen-activated Protein Kinase Pathway Activation, Oxidative Stress and Inflammatory Responses in Rats with PM2.5 Induced Lung Injuries 被引量:6
8
作者 平芬 曹芹 +1 位作者 林桦 韩书芝 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第4期270-276,共7页
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ... Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats. 展开更多
关键词 fine particulate matter(PM2.5) N-AcETYLcYSTEINE mitogen-activated protein kinases oxidative stress inflammatory response RATS
下载PDF
Molecular Cloning and Characterization of a Serine/Threonine Protein Kinase Gene from Triticum aestivum 被引量:5
9
作者 牛吉山 于玲 +2 位作者 马正强 陈佩度 刘大钧 《Acta Botanica Sinica》 CSCD 2002年第3期325-328,共4页
To isolate genes related to resistance to Erysiphe graminis DC. ex Merat f. sp. tritici Em. Marchal in wheat (Triticum aestivum L.), differential display analysis was conducted for mRNA extracted from the seedlings of... To isolate genes related to resistance to Erysiphe graminis DC. ex Merat f. sp. tritici Em. Marchal in wheat (Triticum aestivum L.), differential display analysis was conducted for mRNA extracted from the seedlings of the wheat-Haynaldia villosa 6VS/6AL translocation line 92RI37 that contains the powdery mildew resistance gene Pm21. A full-length cDNA named TaPK1 was isolated. BLAST analysis revealed that it was significantly homologous to Glycine max (L.) Merr. protein kinase (GmPK6) cDNA. TaPK1 encodes a 416 amino acid long polypeptide, which belongs to serine/threonine protein kinase family, also has tyrosine kinase specificity. TaPK1 is a novel protein kinase from wheat. 展开更多
关键词 WHEAT powdery mildew protein kinase
下载PDF
Involvement of Calcium dependent Protein Kinases in ABA regulation of Stomatal Movement 被引量:9
10
作者 王喜庆 武维华 《Acta Botanica Sinica》 CSCD 1999年第5期556-559,共4页
Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA... Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA) in Vicia faba. Stomatal opening was completely inhibited by external application of 1 μmol/L ABA, and such ABA inhibition was significantly reversed by the addition of CDPK inhibitor trifluoperazine (TFP). The inward whole cell K + currents were inhibited by 60% in the presence of 1 μmol/L intracellular ABA, and this inhibition was completely abolished by the addition of CDPK competitive substrate histone Ⅲ S. The results suggest that CDPKs may be involved in the signal transduction cascades of ABA regulated stomatal movements. 展开更多
关键词 calcium dependent protein kinases (cDPKs) K + channels Abscisic acid Stomatal guard cells
下载PDF
Screening of Extracellular Binding Proteins of Rice Receptor-like Kinase CR4 by the Yeast Two-hybrid 被引量:1
11
作者 姚清国 李晓芹 +3 位作者 张文娜 周二鹏 王娟 王景翔 《Agricultural Science & Technology》 CAS 2010年第11期77-81,共5页
[Objective] The research aimed to find the extracellular binding proteins of CR4.[Method] The extracellular domain of OsCR4 was as the bait protein,and the yeast two-hybrid was used to screen cDNA library of seedling ... [Objective] The research aimed to find the extracellular binding proteins of CR4.[Method] The extracellular domain of OsCR4 was as the bait protein,and the yeast two-hybrid was used to screen cDNA library of seedling which was cultivated 14 d.[Result] A lot of proteins which included a peroxide B(D26484),a methionine thioredoxin reductase(ABF96078)and an unknown function protein were gained.[Conclusion] It provided the theory basis for studying the signal transduction mechanism of CR4. 展开更多
关键词 RIcE Receptor-like kinase Extracellular binding protein Yeast two-hybrid
下载PDF
Structure-activity Relationship of Phenothiazines for Inhibition of Protein Kinase C and Reversal of Multidrug Resistance
12
作者 彭晖 杨纯正 +3 位作者 齐静 梁巍 黄牛 郭宗儒 《Journal of Chinese Pharmaceutical Sciences》 CAS 2002年第2期11-18,共8页
Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potenc... Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potency of reversal effect of PTZs on MDR is as follows:2-COC_3 H_7 > 2-CF_3 > 2-COCH_3 > H. The type of piperazinyl substitution also significantlyaffected potency against MDR. The results show the order: CH_3 > COOC_2 H_5 > C_2 H_4 OH. Inaddition, PKC plays a marked role in diverse cellular process including MDR. Some derivatives of PTZwas tested for inhibition of PKC, of which PTZ11 showed the highest inhibitory effect of MDR andPKC, implying a potential reversal agent of MDR for tumor therapy in the future. We also tried toexplore the possible binding model of PTZs to PKC. Our molecular-modeling study preliminarilysuggests how these PTZs bind to PKC and provides a structural basis for the design of high affinityPKC-modulator. The infor-mation may be used in the rational design of more effective drugs. 展开更多
关键词 PHENOTHIAZINES multidrug resistance molecular modeling protein kinase c
下载PDF
Cloning and Hybrid Identification of Banana Receptor-like Protein Kinase Gene
13
作者 张建斌 金志强 +3 位作者 刘菊华 贾彩红 赵丽丽 徐碧玉 《Agricultural Science & Technology》 CAS 2012年第10期2093-2096,共4页
[Objective] This study aimed to clone and identify the banana fruit receptor-like protein kinase gene.[Method] The cDNA phage libraries of banana fruit were adopted as the experimental materials to screen positive pha... [Objective] This study aimed to clone and identify the banana fruit receptor-like protein kinase gene.[Method] The cDNA phage libraries of banana fruit were adopted as the experimental materials to screen positive phage libraries of banana receptor-like protein kinase gene;cloning and sequence analysis of the gene were conducted,and the banana receptor-like protein kinase gene was identified by using in situ hybridization method.[Result] In this study,a 1 698 bp long banana receptor-like protein kinase gene was cloned from banana fruit,encoding 563 amino acids.Southern hybridization result confirmed that the banana receptor-like protein kinase gene was a multiple-copy gene from banana genome.[Conclusion] The study laid the foundation for further investigating the functions of banana receptor-like protein kinase gene in fruit. 展开更多
关键词 BANANA Receptor-like protein kinase in situ hybridization cLONE
下载PDF
Modulatory Effect of Rg_1 on the Activity of ProteinTyrosine Kinase of Lymphocytes in the Elderly
14
作者 刘俊达 王舒 刘红涛 《Journal of Chinese Pharmaceutical Sciences》 CAS 1996年第1期7-12,共6页
The effect of Rg1,a saponin extracted froin Panax ginseng, on the phenotype,receptor and the activity of protein tyrosine kinase (PTK) of lymphocytes isolated from 7 healthy oldpersons were studied. The CD25, CD45RA a... The effect of Rg1,a saponin extracted froin Panax ginseng, on the phenotype,receptor and the activity of protein tyrosine kinase (PTK) of lymphocytes isolated from 7 healthy oldpersons were studied. The CD25, CD45RA and CD45RO phenotypes of lymphocytes were 4eter-mined by indirect immunofluorescence technique. The percentage of CD25, CD45RA and CD45ROpositive lymphocytes was 38.3%±17.3%, 46.0% 15.1%, and 52.6%±14.1% respectively after incu-bation with PHA (5 μ±/ml) for 72 hours. However, there were 58.0%±12.5%, CD25, 64.1% ± 12.4%,CD45RA, and 74.0%±8.0%, CD45RO positive cells in the presence of Rg, ( 1μg/ml) along with PHA(5 μg/ml) over the sanie period of incubation. A significant increase was induced by Rgi (P<0.05).The activities of PTK in the cytoplasm and membrane of lymphocytes were measured by ELISAmcthod after incubation with PHA or PHA+Rg1. The absorbance value of PTK activity in cytoplasmafter 72 hr incubation was 0. 120±0.020 in PHA group, but 0. 1 38±0.015 in PHA+Rg1 group. In thelymphocyte membrane, it was 0.374± 0.060 in PHA group and 0.403 ± 0.008 in PHA+Rg1 group(P<0.001). These results showed that Rgi significantly arid simultaneously increased both the PT Kactivity and the expression of phenotype of lymphocytes. 展开更多
关键词 LYMPHOcYTE RG1 REcEPTOR protein tyrosine kinase
下载PDF
Existence and Characteristics of Tonoplast-bound Protein Kinase in the Tip Cell of Maize Root
15
作者 陈硕 陈珈 王学臣 《Acta Botanica Sinica》 CSCD 2002年第6期661-666,共6页
For understanding the function of tonoplast protein in plant cell signal pathway, we have identified an integral protein kinase activity from the highly purified tonoplast isolated from maize ( Zea mays L.) root by... For understanding the function of tonoplast protein in plant cell signal pathway, we have identified an integral protein kinase activity from the highly purified tonoplast isolated from maize ( Zea mays L.) root by a new nonradioactive method in which a color labeled peptide was used as substrate. The protein kinase was Ca 2+ _dependent and CaM and phosphatidylserine_independent, like the calmodulin_like domain protein kinase (CDPK) in many plants. The optimal pH value and Ca 2+ concentration were 6.5 and 10 μmol/L, respectively. According to the optimal pH value and the effect of detergent, it could be inferred that the active site of this protein kinase is oriented toward the cytoplasm. Zn 2+ had no obvious effect on its activity, indicating that this protein kinase has no zinc_finger domain that exists in some mammalian protein kinases. At the same time, when tonoplast proteins were prephosphorylated in the presence of Ca 2+ and ATP, both the ATP_hydrolysis and the proton_transport activity of vacuolar H +_ATPase were stimulated. This stimulation could be reversed by an alkaline_phosphatase. These results indicate that a Ca 2+ _dependent protein kinase was located in the tonoplast, and a Ca 2+ _dependent phosphorylation, probably caused by this kinase, activated the vacuolar H +_ATPase activity. These results are helpful for further research on the function of CDPK in the course of signal transduction in plants. 展开更多
关键词 protein kinase PHOSPHORYLATION H +_ATPase TONOPLAST maize
下载PDF
Wheat kinase TaSnRK2.4 forms a functional module with phosphatase TaPP2C01 and transcription factor TaABF2 to regulate drought response
16
作者 Yanyang Zhang Xiaoyang Hou +7 位作者 Tianjiao Li Ziyi Wang Jiaqi Zhang Chunlin Zhang Xianchang Liu Xinxin Shi Wanrong Duan Kai Xiao 《The Crop Journal》 SCIE CSCD 2024年第2期384-400,共17页
SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterize... SNF1-related protein kinase 2(SnRK2)family members are essential components of the plant abscisic acid(ABA)signaling pathway initiated by osmotic stress and triggering a drought stress response.This study characterized the molecular properties of TaSnRK2.4 and its function in mediating adaptation to drought in Triticum aestivum.Transcripts of TaSnRK2.4 were upregulated upon drought and ABA signaling and associated with drought-and ABA-responsive cis-elements ABRE and DRE,and MYB and MYC binding sites in the promoter as indicated by reporter GUS protein staining and activity driven by truncations of the promoter.Yeast two-hybrid,BiFC,and Co-IP assays indicated that TaSnRK2.4 protein interacts with TaPP2C01 and an ABF transcription factor(TF)TaABF2.The results suggested that TaSnRK2.4 forms a functional TaPP2C01-TaSnRK2.4-TaABF2 module with its upstream and downstream partners.Transgene analysis revealed that TaSnRK2.4 and TaABF2 positively regulate drought tolerance whereas TaPP2C01 acts negatively by modulating stomatal movement,osmotic adjustment,reactive oxygen species(ROS)homeostasis,and root morphology.Expression analysis,yeast one-hybrid,and transcriptional activation assays indicated that several osmotic stress-responsive genes,including TaSLAC1-4,TaP5CS3,TaSOD5,TaCAT1,and TaPIN4,are regulated by TaABF2.Transgene analysis verified their functions in positively regulating stomatal movement(TaSLAC1-4),proline accumulation(TaP5CS3),SOD activity(TaSOD5),CAT activity(TaCAT1),and root morphology(TaPIN4).There were high correlations between plant biomass and yield with module transcripts in a wheat variety panel cultivated under drought conditions in the field.Our findings provide insights into understanding plant drought response underlying the SnRK2 signaling pathway in common wheat. 展开更多
关键词 Triticum aestivum SnRK2.4 kinase Gene expression protein interaction Transgene analysis Transcriptional activation
下载PDF
Diabetes and high-glucose could upregulate the expression of receptor for activated C kinase 1 in retina
17
作者 Jian Tan Ang Xiao +3 位作者 Lin Yang Yu-Lin Tao Yi Shao Qiong Zhou 《World Journal of Diabetes》 SCIE 2024年第3期519-529,共11页
BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its d... BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function. 展开更多
关键词 Diabetic retinopathy Receptor for activated c kinase 1 protein kinase c Adult retinal pigment epithelium cell line-19
下载PDF
Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway 被引量:27
18
作者 Lei Song Xiaoping Li +2 位作者 Xiao-xue Bai Jian Gao Chun-yan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1870-1876,共7页
The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phy- toestrogen derived from radix astragali that binds to estrogen receptors to produc... The major pathological changes in Alzheimer's disease are beta amyloid deposits and cognitive impairment. Calycosin is a typical phy- toestrogen derived from radix astragali that binds to estrogen receptors to produce estrogen-like effects. Radix astragali Calycosin has been shown to relieve cognitive impairment induced by diabetes mellitus, suggesting calycosin may improve the cognitive function of Alzhei- mer's disease patients. The protein kinase C pathway is upstream of the mitogen-activated protein kinase pathway and exerts a neuropro- tective effect by regulating Alzheimer's disease-related beta amyloid degradation. We hypothesized that calycosin improves the cognitive function of a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Various doses of calycosin (10, 20 and 40 mg/kg) were intraperitoneally injected into APP/PS1 transgenic mice that model Alzheimer's disease. Calycosin diminished hippocampal beta amyloid, Tau protein, interleukin-lbeta, tumor necrosis factor-alpha, acetylcholinesterase and malondialdehyde levels in a dose-dependent manner, and increased acetylcholine and glutathione activities. The administration of a protein kinase C inhibitor, cal- phostin C, abolished the neuroprotective effects of calycosin including improving cognitive ability, and anti-oxidative and anti-inflammato- ry effects. Our data demonstrated that calycosin mitigated oxidative stress and inflammatory responses in the hippocampus of Alzheimer's disease model mice by activating the protein kinase C pathway, and thereby improving cognitive function. 展开更多
关键词 nerve regeneration NEURODEGENERATION Alzheimer's disease cALYcOSIN HIPPOcAMPUS oxidative stress inflammation mice protein kinase c calphostin c GLUTATHIONE MALONDIALDEHYDE neural regeneration
下载PDF
MicroRNA-298 determines the radio-resistance of colorectal cancer cells by directly targeting human dual-specificity tyrosine(Y)-regulated kinase 1A
19
作者 Mei-Zhu Shen Yong Zhang +6 位作者 Fang Wu Mei-Zhen Shen Jun-Lin Liang Xiao-Long Zhang Xiao-Jian Liu Xin-Shu Li Ren-Sheng Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1453-1464,共12页
BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM... BACKGROUND Radiotherapy stands as a promising therapeutic modality for colorectal cancer(CRC);yet,the formidable challenge posed by radio-resistance significantly undermines its efficacy in achieving CRC remission.AIM To elucidate the role played by microRNA-298(miR-298)in CRC radio-resistance.METHODS To establish a radio-resistant CRC cell line,HT-29 cells underwent exposure to 5 gray ionizing radiation that was followed by a 7-d recovery period.The quantification of miR-298 levels within CRC cells was conducted through quantitative RT-PCR,and protein expression determination was realized through Western blotting.Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and proliferation by clonogenic assay.Radio-induced apoptosis was discerned through flow cytometry analysis.RESULTS We observed a marked upregulation of miR-298 in radio-resistant CRC cells.MiR-298 emerged as a key determinant of cell survival following radiation exposure,as its overexpression led to a notable reduction in radiation-induced apoptosis.Intriguingly,miR-298 expression exhibited a strong correlation with CRC cell viability.Further investigation unveiled human dual-specificity tyrosine(Y)-regulated kinase 1A(DYRK1A)as miR-298’s direct target.CONCLUSION Taken together,our findings underline the role played by miR-298 in bolstering radio-resistance in CRC cells by means of DYRK1A downregulation,thereby positioning miR-298 as a promising candidate for mitigating radioresistance in CRC. 展开更多
关键词 MicroRNA-298 Human dual-specificity tyrosine(Y)-regulated kinase 1A colorectal cancer Radio-resistance p53 binding protein 1
下载PDF
Bcl-2 over-expression and activation of protein kinase C suppress the Trail-induced apoptosis in Jurkat T cells 被引量:16
20
作者 GuoBC XuYU 《Cell Research》 SCIE CAS CSCD 2001年第2期101-106,共6页
Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role... Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell. 展开更多
关键词 Apoptosis Apoptosis Regulatory proteins cARcINOGENS Gene Expression Regulation Humans INTERLEUKIN-2 Jurkat cells LIPOPOLYSAccHARIDES Membrane Glycoproteins protein kinase c Proto-Oncogene proteins c-bcl-2 Recombinant proteins Research Support Non-U.S. Gov't Tetradecanoylphorbol Acetate TRANSFEcTION Tumor Necrosis Factor-alpha
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部