The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells.The spectrum of RNAs that interact with the antigen includes species which also bind to the ...The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells.The spectrum of RNAs that interact with the antigen includes species which also bind to the interferon-inducible protein kinase PKR.We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA.Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein.Furthermore, when recombinant La is incubated with a 900bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms.We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.展开更多
Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classica...Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.展开更多
AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativer...AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativereverse transcriptase PCR was performed to measureexpression of ROCK1 mRNA and miR-124. Two cancercell lines were transfected with pre-miR-124 (mimic)and anti-miR-124 (inhibitor) and the effects onROCK1 protein and mRNA expression were observed.In addition, cell proliferation was assessed via a5-ethynyl-2′ deoxyuridine assay. Soft agar formationassay, and cell migration and invasion assays wereused to determine the effect of survivin on thetransformation and invasion activity of CRC cells.RESULTS: miR-124 was significantly downregulated inCRC compared to normal specimens (0.603 ± 0.092 vs1.147 ± 0.286, P = 0.016) and in metastatic comparedto nonmetastatic CRC specimens (0.416 ± 0.047 vs0.696 ± 0.089, P = 0.020). Expression of miR-124 wassignificantly associated with CRC metastasis, tumor Tand N stages, and tumor grade (all P < 0.05). ROCK1protein was significantly increased in CRC comparedto normal tissues (1.896 ± 0.258 vs 0.866 ± 0.136,P = 0.026), whereas ROCK1 mRNA expression wasunaltered (2.613 ± 0.251 vs 2.325 ± 0.246). miR-124and ROCK1 were inversely expressed in CRC tissuesand cell lines. ROCK1 mRNA was unaltered in cellstransfected with miR-124 mimic and miR-124 inhibitor,compared to normal controls. There was a significantreduction in ROCK1 protein in cells transfected withmiR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P s < 0.05).Transformation and invasion of cells transfectedwith miR-124 inhibitor were significantly increasedcompared to those in normal controls (P < 0.05). Cellstransfected with miR-124 inhibitor showed increasedcell proliferation.CONCLUSION: miR-124 promotes hyperplasia andcontributes to invasion of CRC cells, but downregulatesROCK1. ROCK1 and miR-124 may play important rolesin CRC.展开更多
Aim Evidence has shown that stimulation of alA-adrenorecetors receptor (alA-AR) or angiotensin II type 1 receptor (AT1R) acutely down-regulates the rapid component of the delayed rectifier K + current (IKr) via...Aim Evidence has shown that stimulation of alA-adrenorecetors receptor (alA-AR) or angiotensin II type 1 receptor (AT1R) acutely down-regulates the rapid component of the delayed rectifier K + current (IKr) via protein kinase C (PKC). This study was designed to investigate which PKC isozymes mediate down-regulations of IKr by alA-AR and AT1R. Method The whole-cell patch-clamp technique was used to record IKr in native cardio- myocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human ether-a-go-go related gene (hERG) encoding α-subunit of IKr and human alA-AR or AT1R gene. Result In isolated guinea-pig ventricular cardiomyocytes the inhibitory action of Ang II on IKr was little affected by Go6976 (selectively inhibiting PKCα, β and γ) and Go6983 (selectively inhibiting PKCα, β, γ , δ, and ζ), but was significantly antagonized by an inter- nal dialysis with PKCe-selective inhibitory peptide εV1 -2. In contrast, the inhibitory action of alA-AR agonist A61603 on IKr was remarkably attenuated by Go6976 or Go6983, but not affected by peptide εV1 -2. Moreover, specific PKC-selective inhibitory peptide antagonized the effect of A61603. The results suggested that PKCe and PKCα isoform respectively mediated the inhibitory effect of AT1R and a1A-AR. In heterologous expression system, both PKCα and e-selective activator peptides down regulated hERG current with different manner. PKCα activator peptide shifted the activation curve of the channel to the right, but PKCe-selective activator peptide did not. Simi- larly, A61603 shifted the activation curve to the right, whereas Ang Ⅱ had no effect. In addition, both A61603 and PKCα activator peptide showed inhibitory action on bERG A PKC current (an bERG mutant in which 17 of the 18 ROSITE-predicted PKC acceptor serines/threonines were changed to alanine) with a similar potency to wild type bERG current. But, both Ang Ⅱ and PKCe-selective activator peptide exhibited no effects on bERG △ PKC cur- rent. The results indicated that PKCα and PKCe isoforms down-regulated bERG current through different mecha- nism. Conclusion PKCα and PKCe isoform respectively mediates the inhibition on IKr by stimulation of AT1R and alA-AR via different molecular mechanism.展开更多
Adipose mesenchymal stem cells(ADSCs)have protective effects against glutamate-induced excitotoxicity,but ADSCs are limited in use for treatment of optic nerve injury.Studies have shown that the extracellular vesicles...Adipose mesenchymal stem cells(ADSCs)have protective effects against glutamate-induced excitotoxicity,but ADSCs are limited in use for treatment of optic nerve injury.Studies have shown that the extracellular vesicles(EVs)secreted by ADSCs(ADSC-EVs)not only have the function of ADSCs,but also have unique advantages including non-immunogenicity,low probability of abnormal growth,and easy access to target cells.In the present study,we showed that intravitreal injection of ADSC-EVs substantially reduced glutamate-induced damage to retinal morphology and electroretinography.In addition,R28 cell pretreatment with ADSC-EVs before injury inhibited glutamate-induced overload of intracellular calcium,downregulation ofα-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor(AMPAR)subunit GluA2,and phosphorylation of GluA2 and protein kinase C alpha in vitro.A protein kinase C alpha agonist,12-O-tetradecanoylphorbol 13-acetate,inhibited the neuroprotective effects of ADSC-EVs on glutamate-induced R28 cells.These findings suggest that ADSCEVs ameliorate glutamate-induced excitotoxicity in the retina through inhibiting protein kinase C alpha activation.展开更多
Both environmental and genetic factors contribute to the development of diabetes mellitus and although monogenic disorders are rare,they offer unique insights into the fundamental biology underlying the disease.Mutati...Both environmental and genetic factors contribute to the development of diabetes mellitus and although monogenic disorders are rare,they offer unique insights into the fundamental biology underlying the disease.Mutations of the insulin gene or genes involved in the response to protein misfolding cause early onset diabetes.These have revealed an important role for endoplasmic reticulum stress in β-cell survival.This form of cellular stress occurs when secretory proteins fail to fold efficiently.Of all the professional secretory cells we possess,β-cells are the most sensitive to endoplasmic reticulum stress because of the large fluctuations in protein synthesis they face daily.Studies of endoplasmic reticulum stress signaling therefore offer the potential to identify new drug targets to treat diabetes.展开更多
文摘The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells.The spectrum of RNAs that interact with the antigen includes species which also bind to the interferon-inducible protein kinase PKR.We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA.Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein.Furthermore, when recombinant La is incubated with a 900bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms.We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2020MH138(to XZ).
文摘Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.
文摘AIM: To investigate the roles and interactions of rhoassociatedprotein kinase (ROCK)1 and miR-124 inhuman colorectal cancer (CRC).METHODS: Expression of ROCK1 protein wasexamined by Western blotting, and quantitativereverse transcriptase PCR was performed to measureexpression of ROCK1 mRNA and miR-124. Two cancercell lines were transfected with pre-miR-124 (mimic)and anti-miR-124 (inhibitor) and the effects onROCK1 protein and mRNA expression were observed.In addition, cell proliferation was assessed via a5-ethynyl-2′ deoxyuridine assay. Soft agar formationassay, and cell migration and invasion assays wereused to determine the effect of survivin on thetransformation and invasion activity of CRC cells.RESULTS: miR-124 was significantly downregulated inCRC compared to normal specimens (0.603 ± 0.092 vs1.147 ± 0.286, P = 0.016) and in metastatic comparedto nonmetastatic CRC specimens (0.416 ± 0.047 vs0.696 ± 0.089, P = 0.020). Expression of miR-124 wassignificantly associated with CRC metastasis, tumor Tand N stages, and tumor grade (all P < 0.05). ROCK1protein was significantly increased in CRC comparedto normal tissues (1.896 ± 0.258 vs 0.866 ± 0.136,P = 0.026), whereas ROCK1 mRNA expression wasunaltered (2.613 ± 0.251 vs 2.325 ± 0.246). miR-124and ROCK1 were inversely expressed in CRC tissuesand cell lines. ROCK1 mRNA was unaltered in cellstransfected with miR-124 mimic and miR-124 inhibitor,compared to normal controls. There was a significantreduction in ROCK1 protein in cells transfected withmiR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P s < 0.05).Transformation and invasion of cells transfectedwith miR-124 inhibitor were significantly increasedcompared to those in normal controls (P < 0.05). Cellstransfected with miR-124 inhibitor showed increasedcell proliferation.CONCLUSION: miR-124 promotes hyperplasia andcontributes to invasion of CRC cells, but downregulatesROCK1. ROCK1 and miR-124 may play important rolesin CRC.
文摘Aim Evidence has shown that stimulation of alA-adrenorecetors receptor (alA-AR) or angiotensin II type 1 receptor (AT1R) acutely down-regulates the rapid component of the delayed rectifier K + current (IKr) via protein kinase C (PKC). This study was designed to investigate which PKC isozymes mediate down-regulations of IKr by alA-AR and AT1R. Method The whole-cell patch-clamp technique was used to record IKr in native cardio- myocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human ether-a-go-go related gene (hERG) encoding α-subunit of IKr and human alA-AR or AT1R gene. Result In isolated guinea-pig ventricular cardiomyocytes the inhibitory action of Ang II on IKr was little affected by Go6976 (selectively inhibiting PKCα, β and γ) and Go6983 (selectively inhibiting PKCα, β, γ , δ, and ζ), but was significantly antagonized by an inter- nal dialysis with PKCe-selective inhibitory peptide εV1 -2. In contrast, the inhibitory action of alA-AR agonist A61603 on IKr was remarkably attenuated by Go6976 or Go6983, but not affected by peptide εV1 -2. Moreover, specific PKC-selective inhibitory peptide antagonized the effect of A61603. The results suggested that PKCe and PKCα isoform respectively mediated the inhibitory effect of AT1R and a1A-AR. In heterologous expression system, both PKCα and e-selective activator peptides down regulated hERG current with different manner. PKCα activator peptide shifted the activation curve of the channel to the right, but PKCe-selective activator peptide did not. Simi- larly, A61603 shifted the activation curve to the right, whereas Ang Ⅱ had no effect. In addition, both A61603 and PKCα activator peptide showed inhibitory action on bERG A PKC current (an bERG mutant in which 17 of the 18 ROSITE-predicted PKC acceptor serines/threonines were changed to alanine) with a similar potency to wild type bERG current. But, both Ang Ⅱ and PKCe-selective activator peptide exhibited no effects on bERG △ PKC cur- rent. The results indicated that PKCα and PKCe isoforms down-regulated bERG current through different mecha- nism. Conclusion PKCα and PKCe isoform respectively mediates the inhibition on IKr by stimulation of AT1R and alA-AR via different molecular mechanism.
基金supported by the National Key R&D Program of China,No.2016YFC1201800(to JFH)the Key Research and Development Program of Hunan Province,Nos.2018SK2090(to JFH),2022SK2079(to JFH)+2 种基金the Natural Science Foundation of Hu nan Province,No.2021JJ30891(to DC)the Human Resource Bank Program of Hunan Province,No.2020TP3003(to JFH)the School-Enterprise Joint Program of Central South University,No.2021XQLH092(to TQD)。
文摘Adipose mesenchymal stem cells(ADSCs)have protective effects against glutamate-induced excitotoxicity,but ADSCs are limited in use for treatment of optic nerve injury.Studies have shown that the extracellular vesicles(EVs)secreted by ADSCs(ADSC-EVs)not only have the function of ADSCs,but also have unique advantages including non-immunogenicity,low probability of abnormal growth,and easy access to target cells.In the present study,we showed that intravitreal injection of ADSC-EVs substantially reduced glutamate-induced damage to retinal morphology and electroretinography.In addition,R28 cell pretreatment with ADSC-EVs before injury inhibited glutamate-induced overload of intracellular calcium,downregulation ofα-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor(AMPAR)subunit GluA2,and phosphorylation of GluA2 and protein kinase C alpha in vitro.A protein kinase C alpha agonist,12-O-tetradecanoylphorbol 13-acetate,inhibited the neuroprotective effects of ADSC-EVs on glutamate-induced R28 cells.These findings suggest that ADSCEVs ameliorate glutamate-induced excitotoxicity in the retina through inhibiting protein kinase C alpha activation.
基金Supported by a PhD studentship form Diabetes UK (for Thomas SE)
文摘Both environmental and genetic factors contribute to the development of diabetes mellitus and although monogenic disorders are rare,they offer unique insights into the fundamental biology underlying the disease.Mutations of the insulin gene or genes involved in the response to protein misfolding cause early onset diabetes.These have revealed an important role for endoplasmic reticulum stress in β-cell survival.This form of cellular stress occurs when secretory proteins fail to fold efficiently.Of all the professional secretory cells we possess,β-cells are the most sensitive to endoplasmic reticulum stress because of the large fluctuations in protein synthesis they face daily.Studies of endoplasmic reticulum stress signaling therefore offer the potential to identify new drug targets to treat diabetes.