期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cloning and Expression Analysis of a Mitogen-Activated Protein Kinase Gene OsMPK14 in Rice 被引量:1
1
作者 LIANG Wei-hong BI Jia-jia PENG Wei-feng ZHANG Fan SHI Hong-hao LI Li 《Rice science》 SCIE 2010年第4期269-275,共7页
Mitogen activated-protein kinases (MAPKs) are important components in signal transduction pathways responding to various biotic and abiotic stresses. An MAPK gene, OsMPK14 (GenBank Accession No. GQ265780) from ri... Mitogen activated-protein kinases (MAPKs) are important components in signal transduction pathways responding to various biotic and abiotic stresses. An MAPK gene, OsMPK14 (GenBank Accession No. GQ265780) from rice (Oryza sativa L.), was cloned by RT-PCR. The full-length cDNA of OsMPK14 consists of 1660 bp in size, containing an open reading frame of 1629 bp, which encodes a 542-amino-acid polypeptide and has a typical protein kinase domain and a phosphorylation activation motif TDY. Sequence alignment and analysis revealed that OsMPK14 was located on rice chromosome 5, and composed of nine exons and eight introns in the coding region. Semi-quantitative RT-PCR was performed to detect the expression patterns of OsMPK14 in rice shoots and roots under darkness, drought, high salinity, low temperature and abscisic acid treatments. The OsMPK14 mRNA was induced by abscisic acid, low temperature and high salinity, but weakly inhibited by drought. In addition, the expression of OsMPK14 was up-regulated in roots, but down-regulated in shoots by light. The results indicate that OsMPK14 could be implicated in diverse rice stimuli-responsive signaling cascades, and its expression might be regulated by multiple factors. 展开更多
关键词 RICE mitogen-activated protein kinase gene gene clone abiotic stress expression analysis
下载PDF
Investigation of the relationship between DNA-dependent protein kinase and lymphatic metastasis in colorectal cancer
2
作者 Yueyu Chen Zhaohui Liu +2 位作者 Kun Zhu Yuelong Wu Haoran Yin 《The Chinese-German Journal of Clinical Oncology》 CAS 2008年第6期348-351,共4页
Objective: To investigate DNA-dependent protein kinase (DNA-PK) expression,and its relationship with lymphat-ic metastasis in colorectal cancer. Methods: Tumor tissues from 60 patients,divided into two groups accordin... Objective: To investigate DNA-dependent protein kinase (DNA-PK) expression,and its relationship with lymphat-ic metastasis in colorectal cancer. Methods: Tumor tissues from 60 patients,divided into two groups according to lymphatic metastasis,were immunohistochemically stained to detect the DNA-PK expression including Ku70,Ku80 and PKcs proteins. Results: Positivity of both Ku70 and Ku80 in colorectal cancer was negatively correlated with lymphatic metastasis with an r value of -0.57 and -0.38,respectively. Similar correlation was found between Ku expression,especially Ku70,and long-term survival. PKcs,however,displayed no significant correlation. Statistical analysis failed to detect any correlation between DNA-PK expression,and clinical characteristics,such as age,sex,tumor location,tumor thickness and distant metastasis (P>0.05). Conclusion: DNA-PK expression,especially Ku70 expression,is negatively correlated with lymphatic metastasis,and the survival of patients with colorectal cancer. Ku70 expression may be a potential indicator for the preoperative evaluation,and prognosis in colorectal cancer. 展开更多
关键词 colorectal cancer lymphatic metastasis DNA-dependent protein kinase gene (DNA-PK gene
下载PDF
MicroRNA-219 alleviates glutamate-induced neurotoxicity in cultured hippocampal neurons by targeting calmodulin-dependent protein kinase Ⅱ gamma 被引量:2
3
作者 Ting Wang Qun Cai +3 位作者 Wen-Jie Yang Hai-Hua Fan Jian-Feng Yi Feng Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1216-1224,共9页
Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal ne... Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal neurons to model mi R-219 overexpression.A protective effect of mi R-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons,and an underlying mechanism involving calmodulin-dependent protein kinase II γ(Ca MKIIγ) was demonstrated.mi R-219 and Ca MKIIγ m RNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction(q RT-PCR).After neurons were transfected with mi R-219 mimic,effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT) assay and flow cytometry.In addition,a luciferase reporter gene system was used to confirm Ca MKIIγ as a target gene of mi R-219.Western blot assay and rescue experiments were also utilized to detect Ca MKIIγ expression and further verify that mi R-219 in hippocampal neurons exerted its effect through regulation of Ca MKIIγ.MTT assay and q RT-PCR results revealed obvious decreases in cell viability and mi R-219 expression after glutamate stimulation,while Ca MKIIγ m RNA expression was increased.MTT,flow cytometry,and caspase-3 activity assays showed that mi R-219 overexpression could elevate glutamate-induced cell viability,and reduce cell apoptosis and caspase-3 activity.Moreover,luciferase Ca MKIIγ-reporter activity was remarkably decreased by co-transfection with mi R-219 mimic,and the results of a rescue experiment showed that Ca MKIIγ overexpression could reverse the biological effects of mi R-219.Collectively,these findings verify that mi R-219 expression was decreased in glutamate-induced neurons,Ca MKIIγ was a target gene of mi R-219,and mi R-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling Ca MKIIγ expression. 展开更多
关键词 nerve regeneration brain injury septic encephalopathy miR-219 hippocampal neurons glutamate excitotoxicity apoptosis caspase-3 calmodulin-dependent protein kinase γ luciferase reporter gene system neuroprotection neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部