期刊文献+
共找到559篇文章
< 1 2 28 >
每页显示 20 50 100
Downregulation of cold-inducible RNA-binding protein activates mitogen-activated protein kinases and impairs spermatoRenic function in mouse testes 被引量:8
1
作者 Zhi-Ping Xia Xin-Min Zheng +3 位作者 Hang Zheng Xiao-Jun Liu Gui-Yong Liu Xing-Huan Wang 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第6期884-889,共6页
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp... Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways. 展开更多
关键词 cold-inducible RNa-binding protein (CIRP) mitogen-activated protein kinase (MaPK) siRNa in vivo SPERMaTOGENESIS heat stress male infertility
下载PDF
Functional repertoire of protein kinases and phosphatases in synaptic plasticity and associated neurological disorders
2
作者 Raheel Khan Don Kulasiri Sandhya Samarasinghe 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第6期1150-1157,共8页
Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are res... Protein phosphorylation and dephosphorylation are two essential and vital cellular mechanisms that regulate many receptors and enzymes through kinases and phosphatases.Ca^2+- dependent kinases and phosphatases are responsible for controlling neuronal processing;balance is achieved through opposition.During molecular mechanisms of learning and memory,kinases generally modulate positively while phosphatases modulate negatively.This review outlines some of the critical physiological and structural aspects of kinases and phosphatases involved in maintaining postsynaptic structural plasticity.It also explores the link between neuronal disorders and the deregulation of phosphatases and kinases. 展开更多
关键词 alzheimer’s disease autism spectrum disorder CaMKII CaLCINEURIN longterm depression long-term potentiation protein kinase a protein phosphatase 1 protein dephosphorylation protein phosphorylation
下载PDF
Genome-wide identification of the mitogen-activated protein kinase kinases in pear and their functional analysis in response to black spot 被引量:1
3
作者 Zan Zhang Qiming Chen +4 位作者 Luting Jia Ming Qian Qinghai Qiao Xiaosan Huang Shaoling Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期681-692,共12页
The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Blac... The mitogen-activated protein kinase(MAPK)cascade is crucial to plant growth,development,and stress responses.MAPK kinases(MAPKK)play a vital role in linking upstream MAPKK kinases(MAPKKK)with the downstream MAPK.Black spot is one of the most serious fungal diseases of pear which is an important part of the fruit industry in China.The MAPKK genes have been identified in many plants,however,none has been reported in pear(Pyrus bretschneideri).In order to explore whether MAPK gene of pear is related to black spot disease,we designed this experiment.The present study investigated eight putative PbrMAPKK genes obtained from the Chinese white pear genome.The phylogenetic analysis revealed that PbrMAPKK genes were divided into A,B,C,and D groups.These PbrMAPKK genes are randomly distributed on 7 out of 17 chromosomes and mainly originated from the whole-genome duplication(WGD)event.The expression analysis of PbrMAPKK genes in seven pear tissues and the leaves of susceptible and resistant varieties after Alternaria alternata infection by quantitative real-time PCR(qRT-PCR)identified seven candidate genes associated with resistance.Furthermore,virus-induced gene silencing(VIGS)indicated that PbrMAPKK6 gene enhanced resistance to pear black spot disease in pear. 展开更多
关键词 Pyrus bretschneideri Mitogen-activated protein kinase kinase(MaPKK) Gene family Disease resistance Pear black spot
下载PDF
Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway 被引量:2
4
作者 Jin-Yun Zhao Xiao-Long Sheng +7 位作者 Cheng-Jun Li Tian Qin Run-Dong He Guo-Yu Dai Yong Cao Hong-Bin Lu Chun-Yue Duan Jian-Zhong Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1553-1562,共10页
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a... Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury. 展开更多
关键词 adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway aNGIOGENESIS aged mice compound C METFORMIN spinal cord injury
下载PDF
Overexpression of mitogen-activated protein kinase phosphatase-1 in endothelial cells reduces blood-brain barrier injury in a mouse model of ischemic stroke 被引量:1
5
作者 Xiu-De Qin Tai-Qin Yang +6 位作者 Jing-Hui Zeng Hao-Bin Cai Shao-Hua Qi Jian-Jun Jiang Ying Cheng Long-Sheng Xu Fan Bu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1743-1749,共7页
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le... Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis. 展开更多
关键词 blood-brain barrier brain injury cerebral ischemia endothelial cells extracellular signal-regulated kinase 1/2 functional recovery mitogenactivated protein kinase phosphatase 1 OCCLUDIN oxygen and glucose deprivation transient middle cerebral artery occlusion
下载PDF
Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy 被引量:3
6
作者 Yaowei Lv Xiangyun Yao +3 位作者 Xiao Li Yuanming Ouyang Cunyi Fan Yun Qian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期598-605,共8页
Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab... Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways. 展开更多
关键词 cell metabolism diabetic peripheral neuropathy peripheral nerve injury protein kinase C pathway reactive oxygen species.
下载PDF
Panax Notoginseng Saponins Induced Up-Regulation,Phosphorylation and Binding Activity of MEK,ERK,AKT,PI-3K Protein Kinases and GATA Transcription Factors in Hematopoietic Cells 被引量:11
7
作者 孙馨 高瑞兰 +2 位作者 林筱洁 徐卫红 陈小红 《Chinese Journal of Integrative Medicine》 SCIE CAS 2013年第2期112-118,共7页
Objective: To investigate the effects of panax notoginseng saponins (PNS) on expression, regulation and phosphorylation of multiple protein kinases in mitogen activated protein kinase (MAPK) intracellular signal ... Objective: To investigate the effects of panax notoginseng saponins (PNS) on expression, regulation and phosphorylation of multiple protein kinases in mitogen activated protein kinase (MAPK) intracellular signal pathway and GATA transcription factors in hematopoietic cells, so as to explore its mechanism of proliferation and differentiation activity on hematopoiesis. Methods: The human granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288 and Meg-01 cell lines were treated by PNS, the positive control of K562, CHRF-288 ceils treated by recombination human erythropoietin (Epo) and thrombopoietin (Tpo) respectively. The total cell lysate and nuclei protein were extracted after being treated by PNS, subsequently, analyzed by both Western blot and immune-precipitation. Meanwhile, the nuclei extract was performed for electrophoretic mobility shift assay (EMSA) by using 32p radio labeled double-stranded GATA consensus oligonucleotide. Results: The expression levels of kinase MEK-1, MEK-2, ERK-1, ERK-2, AKT-1, AKT-2 and PI- 3K were increased by PNS treatment to different extent in four cell lines, depending on cellular heterogeneity and sensitivity to PNS, also phosphorylation of MEK-1, ERK-1 was differentially promoted by PNS respectively (P〈0.05, 0.01, 0.001). The expression levels of transcription factors GATA-1 and GATA-2 were increased, moreover, their DNA binding activities were raised dramatically in PNS treated K562, CHRF-288 and Meg-01 cells compared with the controls respectively (P〈0.05, 0.01, 0.001). The positive control of K562, CHRF-288 cells treated by Epo or Tpo respectively also displayed up-regulation of protein kinases and GATA transcription factors respectively (P〈0.05, 0.01, 0.001). Conclusion: The results indicated that intracellular signal pathway initiated by PNS was involved in MAPK pathway and transcription factors of GATA family in hematopoietic cells. PNS displayed the role to promote proliferation and differentiation, by means of increasing expression level and phosphorylation status of multiple protein kinases, also inducing synthesis of GATA transcription factors and up- regulation its DNA binding activity. 展开更多
关键词 panax notoginseng saponins hematopoietic cells protein kinase PHOSPHORYLaTION transcription factor
原文传递
Atherosis-associated lnc_000048 activates PKR to enhance STAT1-mediated polarization of THP-1 macrophages to M1 phenotype 被引量:1
8
作者 Yuanyuan Ding Yu Sun +5 位作者 Hongyan Wang Hongqin Zhao Ruihua Yin Meng Zhang Xudong Pan Xiaoyan Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2488-2498,共11页
Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classica... Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE^(-/-)mice.However,little is known about the role of lnc_000048 in classically activated macrophage(M1)polarization.In this study,we established THP-1-derived testing state macrophages(M0),M1 macrophages,and alternately activated macrophages(M2).Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages.Flow cytometry was used to detect phenotypic proteins(CD11b,CD38,CD80).We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048.Flow cytometry,western blot,and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response,while over-expression of lnc_000048 led to the opposite effect.Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization.Moreover,catRAPID prediction,RNA-pull down,and mass spectrometry were used to identify and screen the protein kinase RNA-activated(PKR),then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR.Immunofluorescence(IF)-RNA fluorescence in situ hybridization(FISH)double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage.We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation,leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression.Taken together,these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke. 展开更多
关键词 aTHEROSCLEROSIS inflammation lnc_000048 lncRNa MaCROPHaGE POLaRIZaTION protein kinase RNa-activated(PKR) STaT1
下载PDF
Effects of Andrographolide on the Activation of Mitogen Activated Protein Kinases and Nuclear Factor-κ B in Mouse Peritoneal Macrophage-derived Foam Cells 被引量:6
9
作者 李福星 李树生 《Chinese Journal of Integrative Medicine》 SCIE CAS 2012年第5期391-394,共4页
Objective: To observe the effect of andrographolide on the activation of mitogen-activated protein kinases (MAPKs) and expression of nuclear factor- kB (NF-kB) in macrophage foam cells. Methods: The mouse perito... Objective: To observe the effect of andrographolide on the activation of mitogen-activated protein kinases (MAPKs) and expression of nuclear factor- kB (NF-kB) in macrophage foam cells. Methods: The mouse peritoneal macrophages were cultured in the media in the presence of oxidized low-density lipoprotein (ox-LDL), ox-LDL+andrographolide, or neither (control). The phosphorylation of MAPK molecules (p38MAPK, JNK, ERK1/2) and the expressions of NK- kB p65 were examined by Western blot. Results: As compared with cells in the control group, the expressions of phospho-p38 and NF- kB p65 were increased in the cells cultured with either ox-LDL or ox-LDL+andrographolide (P〈0.01), but attenuated significantly in the presence of ox-LDL+ andrographolide when compared with ox-LDL (P〈0.05). The phospho-JNK increased in the presence of either ox-LDL or ox-LDL+andrographolide when compared with control cells (P〈0.01), but no significant difference existed between ox-LDL and ox-LDL+andrographolide (P〉0.05). The expression of phospho-ERK1/2 was increased in the presence of ox-LDL compared with the control cells (P〈0.01), but no significant differences existed between the cells cultured in the presence of ox-LDL+andrographolide and the control medium (P〉0.05). Conclusions: Andrographolide could inhibit the activation of ERK1/2, p38MAPK and NK-kB induced by ox-LDL in macrophage foam cells, which might be one of its mechanisms in preventing atherosclerosis. 展开更多
关键词 aNDROGRaPHOLIDE mouse peritoneal macrophage foam cells mitogen activated protein kinasese nuclear factor-kB aTHEROSCLEROSIS
原文传递
Death-associated protein kinase 1 is associated with cognitive dysfunction in major depressive disorder
10
作者 Xiao-Hui Li Hong-Can Zhu +5 位作者 Xue-Min Cui Wang Wang Lin Yang Li-Bo Wang Neng-Wei Hu Dong-Xiao Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1795-1801,共7页
We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's d... We previously showed that death-associated protein kinase 1(DAPK1)expression is increased in hippocampal tissue in a mouse model of major depressive disorde and is related to cognitive dysfunction in Alzheimer's disease.In addition,depression is a risk factor for developing Alzheimer's disease,as well as an early clinical manifestation of Alzheimer's disease.Meanwhile,cognitive dysfunction is a distinctive feature of major depressive disorder.Therefore,DAPK1 may be related to cognitive dysfunction in major depressive disorder.In this study,we established a mouse model of major depressive disorder by housing mice individually and exposing them to chronic,mild,unpredictable stressors.We found that DAPK1 and tau protein levels were increased in the hippocampal CA3 area,and tau was hyperphosphorylated at Thr231,Ser262,and Ser396 in these mice.Furthermore,DAPK1 shifted from axonal expression to overexpression on the cell membrane.Exercise and treatment with the antidepressant drug citalopram decreased DAPK1 expression and tau protein phosphorylation in hippocampal tissue and improved both depressive symptoms and cognitive dysfunction.These results indicate that DAPK1 may be a potential reason and therapeutic target of cognitive dysfunction in major depressive disorder. 展开更多
关键词 alzheimer's disease antidepressant drug behavioral tests cognitive dysfunction death-associated protein kinase 1 EXERCISE HIPPOCaMPUS major depressive disorder PHOSPHORYLaTION tau protein
下载PDF
MicroRNA-370-5p inhibits pigmentation and cell proliferation by downregulating mitogen-activated protein kinase kinase kinase 8 expression in sheep melanocytes
11
作者 JI Kai-yuan WEN Ru-jun +3 位作者 WANG Zheng-zhou TIAN Qian-qian ZHANG Wei ZHANG Yun-hai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1131-1141,共11页
In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of... In mammals,microRNAs(miRNAs)play key roles in multiple biological processes by regulating the expression of target genes.Studies have found that the levels of miR-370-5p expression differ significantly in the skins of sheep with different hair colors;however,its function remains unclear.In this study,we investigated the roles of miR-370-5p in sheep melanocytes and found that the overexpression of miR-370-5p significantly inhibited cell proliferation(P<0.01),tyrosinase activity(P=0.001)and significantly reduced(P<0.001)melanin production.Functional prediction revealed that the 3′-untranslated region(UTR)of MAP3K8 has a putative miR-370-5p binding site,and the interaction between these two molecules was confirmed using luciferase reporter assays.In situ hybridization assays revealed that MAP3K8 is expressed in the cytoplasm of melanocytes.The results of quantitative RT-PCR and Western blotting analyses revealed that overexpression of miR-370-5p in melanocytes significantly inhibits(P<0.01)MAP3K8 expression via direct targeting of its 3′UTR.Inhibition of MAP3K8 expression by siRNA-MAP3K8 transfection induced a significant inhibition(P<0.01)of melanocyte proliferation and significant reduction(P<0.001)in melanin production,which is consistent with our observations for miR-370-5p.Target gene rescue experiments indicated that the expression of MAP3K8 in melanocytes co-transfected with miR-370-5p and MAP3K8-cDNA(containing sites for the targeted binding to miR-370-5p)was significantly rescued(P≤0.001),which subsequently promoted significant increases in cell proliferation(P<0.001)and melanin production(P<0.01).Collectively,these findings indicate that miR-370-5p plays a functional role in inhibiting sheep melanocyte proliferation and melanogenesis by downregulating the expression of MAP3K8. 展开更多
关键词 MICRORNa mitogen-activated protein kinase kinase kinase 8 MELaNOGENESIS sheep melanocytes cell proliferation
下载PDF
Suppressing high mobility group box-1 release alleviates morphine tolerance via the adenosine5'-monophosphate-activated protein kinase/heme oxygenase-1 pathway
12
作者 Tong-Tong Lin Chun-Yi Jiang +10 位作者 Lei Sheng Li Wan Wen Fan Jin-Can Li Xiao-Di Sun Chen-Jie Xu Liang Hu Xue-Feng Wu Yuan Han Wen-Tao Liu Yin-Bing Pan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2067-2074,共8页
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p... Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance. 展开更多
关键词 adenosine 5’-monophosphate-activated protein kinase heme oxygenase-1 high mobility group box-1 INTERLEUKIN-1Β MICROGLIa morphine tolerance NEUROINFLaMMaTION neuron nuclear factor-κB p65 Toll-like receptor 4
下载PDF
Protein kinase inhibitors affect spermatogenic functions and blood testis barrier remodelling:A scoping review
13
作者 Oyovwi Mega Obukohwo Onome Bright Oghenetega +4 位作者 Falajiki Yewande Faith Emojevwe Victor Rotu Arientare Rume Joseph Gregory Uchechukwu Oyeleke Abiodun Abioye 《Asian pacific Journal of Reproduction》 2023年第3期97-108,共12页
Objective:To identify the role of protein kinase in male reproduction in animal models and human spermatogenic function.Methods:This study assessed the protein kinase of male reproduction in animal models and human us... Objective:To identify the role of protein kinase in male reproduction in animal models and human spermatogenic function.Methods:This study assessed the protein kinase of male reproduction in animal models and human using different reviewed paper indexed in PubMed,Science Direct,EBSCO,Scopus,Cochrane Library,Sage Journals,and Google Scholar.Data were charted based on author,year of publication published between 1893 and 2023,country,purpose,data collection,key findings,and research focus/domain.Results:The MAPK pathway contributed to the growth,maturation,and functionality of male germ cells.We also found out that certain influencing factors categorized into hormonal/non hormonal factors and chemotoxicant,as well as heat stress expressed an inhibitory mechanism on protein kinase,thus affecting spermatogenic functions and maintenance/remodeling of the blood testis barrier,as well as the physiology of the Sertoli cells necessary for nutritional support of spermatogenesis.However,activating protein kinases pathway like the mTOR pathway as well as increased expression of peroxiredoxin-4 and L-carnitine mediated protein kinases may be useful for treating or managing male reproductive dysfunction.Conclusions:Protein kinase plays an important role in spermatogenic functions and blood testis remodeling in animal and human.Its assessment provides essential information that can guide treatment strategies aimed at improving male reproductive potential.Taken together,these recent advances highlight a future therapeutic intervention in assessing male reproductive potential.It might also be possible to look at potential targets for male contraceptives in the MAPK pathway. 展开更多
关键词 SPERMaTOGENESIS protein kinase INHIBITORS Sertoli cells CaPaCITaTION MTOR
下载PDF
Deleted in liver cancer 1 suppresses the growth of prostate cancer cells through inhibiting Rho-associated protein kinase pathway
14
作者 Hua Gong Kang Chen +2 位作者 Lan Zhou Yongchao Jin Weihua Chen 《Asian Journal of Urology》 CSCD 2023年第1期50-57,共8页
Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate can... Objective:Deleted in liver cancer 1(DLC1)is a GTPase-activating protein that is reported as a suppressor in certain human cancers.However,the detailed biological function of DLC1 is still unclear in human prostate cancer(PCa).In the present study,we aimed to explore the function of DLC1 in PCa cells.Methods:Silencing and overexpression of DLC1 were induced in an androgen-sensitive PCa cell line(LNCaP)using RNA interference and lentiviral vector transduction.The Cell Counting Kit-8 assay was performed to determine cell proliferation.The cell cycle was examined by performing a propidium iodide staining assay.Results:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of LNCaP cells.Moreover,DLC1 expression was negatively correlated with Rho-associated protein kinase(ROCK)expression in LNCaP cells.Importantly,this study showed that the ROCK inhibitor Y27632 restored the function of DLC1 in LNCaP cells and reduced the tumorigenicity of LNCaP cells in vivo.Conclusion:Our results indicated that DLC1 overexpression markedly suppressed the proliferation and cell cycle progression of PCa cells and negatively correlated with ROCK expression in PCa cells and tissue. 展开更多
关键词 Cell cycle Deleted in liver cancer 1 PROLIFERaTION Prostate cancer Rho-associated protein kinase
下载PDF
Mechanism of Retinoic Acid and Mitogen-activated Protein Kinases Regulating Hyperoxia Lung Injury 被引量:3
15
作者 李文斌 常立文 +5 位作者 容志惠 张谦慎 王华 汪鸿 刘春梅 刘伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第2期178-181,共4页
To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (t... To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation. 展开更多
关键词 hyperoxia lung injury mitogen-activated protein kinases retinoic acid aPOPTOSIS PROLIFERaTION
下载PDF
Ceramide from sphingomyelin hydrolysis differentially mediates mitogen-activated protein kinases (MAPKs) activation following cerebral ischemia in rat hippocampal CA1 subregion 被引量:3
16
作者 Xian Sun 《The Journal of Biomedical Research》 CAS 2010年第2期132-137,共6页
Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvesse... Objective: To explore the role that ceramide plays in the activation of mitogen-activated protein kinases (MAPKs) during cerebral ischemia and reperfusion. Methods: Rats were subjected to ischemia by the fourvessel occlusion (4-VO) method. The sphingomyelinase inhibitor TPCK was administered to the CA1 subregion of the rat hippocampus before inducing ischemia. Western blot was used to examine the activity of extracellular- signal regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) using antibodies against ERK, JNK and diphosphorylated ERK and JNK. Results: At lh reperfusion post-ischemia, JNK reached its peak activity while ERK was undergoing a sharp inactivation (P 〈 0.05). The level of diphosphorylated JNK was significantly reduced but the sharp inactivation of ERK was visibly reversed (P 〈 0.05) by the sphingomyelinase inhibitor. Conclusion: The ceramide signaling pathway is up-regulated through sphingomyelin hydrolysis in brain ischemia, promoting JNK activation and suppressing ERK activation, culminating in the ischemic lesion. 展开更多
关键词 CERaMIDE cerebral ischemia extracellular-signal regulated kinase c-Jun N-terminal protein kinase
下载PDF
Poly(A)-specific ribonuclease protein promotes the proliferation,invasion and migration of esophageal cancer cells
17
作者 Fu-Wei Zhang Xiao-Wei Xie +5 位作者 Meng-Hua Chen Jian Tong Qun-Qing Chen Jing Feng Feng-Ti Chen Wen-Qi Liu 《World Journal of Gastroenterology》 SCIE CAS 2023年第31期4783-4796,共14页
BACKGROUND Bioinformatics analysis showed that the expression of the poly(A)-specific ribonuclease(PARN)gene in gastric cancer,head and neck squamous cell carcinoma,melanoma,cervical cancer and lung squamous cell carc... BACKGROUND Bioinformatics analysis showed that the expression of the poly(A)-specific ribonuclease(PARN)gene in gastric cancer,head and neck squamous cell carcinoma,melanoma,cervical cancer and lung squamous cell carcinoma tissues was significantly higher than that in normal tissues and was associated with high stage and poor prognosis.The expression of the PARN gene in esophageal cancer(EC)tissue is also significantly higher than that in normal tissues,but the effect of PARN on the proliferation,migration and invasion of EC cells remains unclear.AIM To investigate the relationship between PARN and the proliferation,migration and invasion of EC cells.METHODS The EC tissues of 91 patients after EC surgery and 63 paired precancerous healthy tissues were collected.PARN mRNA levels were measured using a tissue microarray,and the PARN expression level was evaluated using immunohistochemistry to analyze the relationship between PARN expression and clinicopathologic features as well as the survival and prognosis of patients.In addition,the effects of PARN gene knockout on tumor cell proliferation,invasion and migration were studied by using shRNA during the in vitro culture of EC cell lines Eca-109 and TE-1,and the effects of the PARN gene on tumor growth in vivo were verified by a xenotransplantation nude mice model.RESULTS The expression of PARN in EC tissues was higher than that in adjacent normal tissues,and the level of PARN expression was significantly positively correlated with lymphatic metastasis.Patients with high PARN levels had poor overall survival.BIM,IGFBP-5 and p21 levels were significantly increased in the PARN knockout group,while the expression levels of the antiapoptotic proteins Survivin and sTNF-R1 were significantly decreased in the apoptotic antibody array data.In addition,the expression levels of Akt,p-Akt,PIK3CA and CCND1 in the downstream signaling pathway regulating EC progression were significantly decreased.The culture of EC cell lines confirmed that the apoptosis rate of EC cells was significantly increased,the growth and proliferation of tumor cells were significantly inhibited,and the invasion and migration ability of tumor cells were significantly decreased after PARN gene knockout.In vivo experiments of BALB/c nude mice transfected with Eca-109 cells expressing control shRNA(sh-NC)and PARN shRNA(sh-PARN)showed that the tumor volume and weight of nude mice treated with sh-PARN were significantly decreased compared with those of nude mice treated with sh-NC,indicating that PARN knockdown significantly inhibited tumor growth in vivo.CONCLUSION PARN has antiapoptotic effects on EC cells and promotes their proliferation,invasion and migration,which is associated with the development of EC and poor patient prognosis.PARN may become a potential target for the diagnosis,prognosis prediction and treatment of EC. 展开更多
关键词 Poly(a)-specific ribonuclease Esophageal cancer aPOPTOTIC Phosphatidylinositol 3-kinase/protein kinase B
下载PDF
Osteopontin promotes gastric cancer progression via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
18
作者 Yue-Chao Qin Xin Yan +2 位作者 Xiao-Lin Yuan Wei-Wei Yu Fan-Jie Qu 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1544-1555,共12页
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect... BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC. 展开更多
关键词 OSTEOPONTIN Proliferation INVaSION Migration Gastric cancer Phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
下载PDF
Thioridazine reverses trastuzumab resistance in gastric cancer by inhibiting S-phase kinase associated protein 2-mediated aerobic glycolysis
19
作者 Zheng-Yan Yang Yi-Wei Zhao +5 位作者 Jing-Rui Xue Ran Guo Zhi Zhao Han-Di Liu Zhi-Guang Ren Ming Shi 《World Journal of Gastroenterology》 SCIE CAS 2023年第45期5974-5987,共14页
BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treat... BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2(HER-2)-positive gastric cancer(GC).However,the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance.While S-phase kinase associated protein 2(Skp2)overexpression has been implicated in the malignant progression of GC,its role in regulating trastuzumab resistance in this context remains uncertain.Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products,there has been a lack of successful commercialization of drugs specifically targeting Skp2.AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment.METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells.Q-PCR,western blot,and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression.A cell counting kit-8 assay,flow cytometry,a amplex red glucose/glucose oxidase assay kit,and a lactate assay kit were utilized to measure the proliferation,apoptosis,and glycolytic activity of GC cells in vitro.A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo.RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab.Thioridazine demonstrated the ability to directly bind to Skp2,resulting in a reduction in Skp2 expression at both the transcriptional and translational levels.Moreover,thioridazine effectively inhibited cell proliferation,exhibited antiapoptotic properties,and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways.The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo,surpassing the efficacy of either monotherapy.CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance,particularly when used in conjunction with lapatinib.This compound has potential benefits for patients with Skp2-proficient tumors. 展开更多
关键词 Gastric cancer Trastuzumab resistance THIORIDaZINE S-phase kinase associated protein 2 GLYCOLYSIS
下载PDF
Raf kinase inhibitor protein combined with phosphorylated extracellular signal-regulated kinase offers valuable prognosis in gastrointestinal stromal tumor
20
作者 Wen-Zhi Qu Luan Wang +1 位作者 Juan-Juan Chen Yang Wang 《World Journal of Gastroenterology》 SCIE CAS 2023年第26期4200-4213,共14页
BACKGROUND Gastrointestinal stromal tumors(GISTs)are the most common mesenchymal tumors of the gastrointestinal tract.Tyrosine kinase inhibitors,such as imatinib,have been used as first-line therapy for the treatment ... BACKGROUND Gastrointestinal stromal tumors(GISTs)are the most common mesenchymal tumors of the gastrointestinal tract.Tyrosine kinase inhibitors,such as imatinib,have been used as first-line therapy for the treatment of GISTs.Although these drugs have achieved considerable efficacy in some patients,reports of resistance and recurrence have emerged.Extracellular signal-regulated kinase 1/2(ERK1/2)protein,as a member of the mitogen-activated protein kinase(MAPK)family,is a core molecule of this signaling pathway.Nowadays,research reports on the important clinical and prognostic value of phosphorylated-ERK(P-ERK)and phosphorylated-MAPK/ERK kinase(P-MEK)proteins closely related to raf kinase inhibitor protein(RKIP)have gradually emerged in digestive tract tumors such as gastric cancer,colon cancer,and pancreatic cancer.However,literature on the expression of these downstream proteins combined with RKIP in GIST is scarce.This study will focus on this aspect and search for answers to the problem.AIM To detect the expression of RKIP,P-ERK,and P-MEK protein in GIST and to analyze their relationship with clinicopathological characteristics and prognosis of this disease.Try to establish a new prognosis evaluation model using RKIP and PERK in combination with analysis and its prognosis evaluation efficacy.METHODS The research object of our experiment was 66 pathologically diagnosed GIST patients with complete clinical and follow-up information.These patients received surgical treatment at China Medical University Affiliated Hospital from January 2015 to January 2020.Immunohistochemical method was used to detect the expression of RKIP,PERK,and P-MEK proteins in GIST tissue samples from these patients.Kaplan-Meier method was used to calculate the survival rate of 63 patients with complete follow-up data.A Nomogram was used to represent the new prognostic evaluation model.The Cox multivariate regression analysis was conducted separately for each set of risk evaluation factors,based on two risk classification systems[the new risk grade model vs the modified National Institutes of Health(NIH)2008 risk classification system].Receiver operating characteristic(ROC)curves were used for evaluating the accuracy and efficiency of the two prognostic evaluation systems.RESULTS In GIST tissues,RKIP protein showed positive expression in the cytoplasm and cell membrane,appearing as brownish-yellow or brown granules.The expression of RKIP was related to GIST tumor size,NIH grade,and mucosal invasion.P-ERK protein exhibited heterogeneous distribution in GIST cells,mainly in the cytoplasm,with occasional presence in the nucleus,and appeared as brownish-yellow granules,and the expression of P-ERK protein was associated with GIST tumor size,mitotic count,mucosal invasion,and NIH grade.Meanwhile,RKIP protein expression was negatively correlated with P-ERK expression.The results in COX multivariate regression analysis showed that RKIP protein expression was not an independent risk factor for tumor prognosis.However,RKIP combined with P-ERK protein expression were identified as independent risk factors for prognosis with statistical significance.Furthermore,we establish a new prognosis evaluation model using RKIP and P-ERK in combination and obtained the nomogram of the new prognosis evaluation model.ROC curve analysis also showed that the new evaluation model had better prognostic performance than the modified NIH 2008 risk classification system.CONCLUSION Our experimental results showed that the expression of RKIP and P-ERK proteins in GIST was associated with tumor size,NIH 2008 staging,and tumor invasion,and P-ERK expression was also related to mitotic count.The expression of the two proteins had a certain negative correlation.The combined expression of RKIP and P-ERK proteins can serve as an independent risk factor for predicting the prognosis of GIST patients.The new risk assessment model incorporating RKIP and P-ERK has superior evaluation efficacy and is worth further practical application to validate. 展开更多
关键词 Raf kinase inhibitory protein Phosphorylated extracellular-signal-regulated kinase Gastrointestinal stromal tumors IMMUNOHISTOCHEMISTRY Survival analysis Risk grade model
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部