The profile of polypeptides separated by SDS-PAGE from seed of major crop species such as pea (Pisum sativum) is complex, resulting from cleavage (processing) of precursors expressed from multiple copies of genes enco...The profile of polypeptides separated by SDS-PAGE from seed of major crop species such as pea (Pisum sativum) is complex, resulting from cleavage (processing) of precursors expressed from multiple copies of genes encoding vicilin and legumin, the major storage globulins. Translation in vitro of mRNAs hybrid-selected from mid-maturation pea seed RNAs by denned vicilin and legumin cDNA clones provided precursor molecules that were cleaved in vitro by a cell-free protease extract obtained from similar stage seed; the derived polypep tides were of comparable sizes to those observed in vivo. The feasibility of transcribing mENA in vitro from a cDNA clone and cleavage in vitro of the derived translation products was established for a legumin clone, providing a method for determining polypeptide products of an expressed sequence. This approach will also be useful for characterising cleavage site requirements since modifications an readily be introduced at the DNA level.展开更多
AIM:The current study was to determine the serum/pLasma levels of VEGF,IL-6,malondialdehyde (MDA),nitric oxide (NO),PCT and CRP in gastric carcinoma and correlation with the stages of the disease and accompanying infe...AIM:The current study was to determine the serum/pLasma levels of VEGF,IL-6,malondialdehyde (MDA),nitric oxide (NO),PCT and CRP in gastric carcinoma and correlation with the stages of the disease and accompanying infection. METHODS:We examined the levels of serum VEGF,IL-6, PCT,CRP and plasma MDA,NO in 42 preoperative gastric cancer patients and 23 healthy subjects.There were infection anamneses that had no definite origin in 19 cancer patients. RESULTS:The VEGF levels (mean±SD; pg/mL) were 478.05±178.29 and 473.85±131.24 in gastric cancer patients with and without infection,respectively,and these values were not significantly different (P>0.05).The levels of VEGF, CRP,PCT,It-6,MDA and NO in cancer patients were significantly higher than those in healthy controls and the levels of CRP,PCT,It-6,MDA and NO were statistically increased in infection group when compared with non- infection group (P<0.001). CONCLUSION:Although serum VEGF concentrations were increased in gastric cancer,this increase might not be related to infection.CRP,PCT,IL-6,MDA and NO have obvious drawbacks in the diagnosis of infections in cancer patients. These markers may not help to identify infections in the primary evaluation of cancer patients and hence to avoid unnecessary antibiotic treatments as well as hospitalization. According to the results of this study,IL-6,MDA,NO and especially VEGF can be used as useful parameters to diagnose and grade gastric cancer.展开更多
Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid p...Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Objective To investigate the proteolytic mechanism of amyloid precursor protein (APP) and to explore amyloidbeta (Aβ) generation in living neurons. Methods DNA fragments were amplified by PCR or synthesized. The ...Objective To investigate the proteolytic mechanism of amyloid precursor protein (APP) and to explore amyloidbeta (Aβ) generation in living neurons. Methods DNA fragments were amplified by PCR or synthesized. The four fragments, CFP, 54bp, YFP and C99 were ligated into pcDNA3.0 vector to construct the recombinant plasmids pcDNA3.0-CFP-54bp- YFP and pcDNA3.0-CFP-54bp-YFP-C99. The SH-SY5Y cells were transiently transfected with pcDNA3.0-CFP-54bp-YFP or pcDNA3.0-CFP-54bp-YFP-C99. The expression of fusion gene was examined under a multiphoton laser scanning microscope. Fluorescence resonance energy transfer (FRET) was used to measure the β cleavage and γ cleavage of APE Aβ generation was confirmed by immunocytochemistry and multiphoton laser scanning microscopy. Cell viability was tested by MTT assay at different time points. Results (1) The double restriction endonuclease digestion and sequencing analysis confirmed the authenticity of the recombinant plasmids pcDNA3.0-CFP-54bp-YFP and pcDNA3.0-CFP-54bp- YFP-C99. (2) Blue and yellow fluorescences were detected in the transfected cells. (3) FRET occurred in pcDNA3.0-CFP- 54bp-YFP-transfected cells but not in pcDNA3.0-CFP-54bp-YFP-C99-transfected cells. (4) Aβ was produced in the pcDNA3.0- CFP-54bp-YFP-C99 transfected cells. (5) Aβ-deposition was widespread in the cell. (6) Cell viability decreased along with the intracellular Aβ deposition. Conclusion C99 is important for the APP β cleavage. Aβ may be generated and deposited in cells at the early stage of Alzheimer's disease. Intracellular Aβ accumulation brings deleterious effects on cells.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after cul...After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after culture for 72 hours. Reverse transcription-PCR showed that the mRNA expression of amyloid protein precursor decreased in all groups following culture for 24 hours, and that there was no significant difference in the amount of decrease between donepezil and compound Danshen tablets. Our results suggest that compound Danshen tablets can reduce expression of the mRNA for amyloid protein precursor in a transgenic cell model of Alzheimer's disease, with similar effects to donepezil.展开更多
BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheime...BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.展开更多
BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in...BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in the Aβ pathway, and over-expression of these genes can lead to Aβ deposit/on in the brain. OBJECTIVE: To observe the influence of Longyanshen polysaccharides on expression of BACE, APP, and Aβ in the senescence-accelerated mouse prone/8 (SAMP8) brain, and to compare these effects with huperzine A treatment. DESIGN, TIME AND SETTING: A randomized, controlled, neurobiochemical experiment was performed at the Department of Pharmacology and Scientific Experimental Center of Guangxi Medical University from September 2005 to January 2008. MATERIALS: Longyanshen polysaccharfdes powder was extracted from the dried slices of the medicinal plant Longyanshen. The active component, Longyanshen polysaccharides, was provided by the Department of Pharmacology, Guangxi Medical University; huperzine A was purchased from Yuzhong Drug Manufactory, China. METHODS: Healthy SAMP8 mice were used to establish a model of Alzheimer's disease. A total of 50 SAMP8 mice were randomly assigned to 5 groups (n = 10): SAMP8, huperzine A, low-, middle-, and high-dose polysaccharides. In addition, 10 senescence-accelerated mouse resistant 1 (SAMR1) mice were selected as normal controls. SAMP8 and SAMR1 mice were administered 30 mL/kg normal saline; the huperzine A group was administered 0.02 mg/kg huperzine A; the low-, middle-, and high-dose polysaccharides groups were respectively administered 45, 90, and 180 mg/kg Longyanshen polysaccharides. Each group was treated by intragastric administration, once per day, for 50 consecutive days. MAIN OUTCOME MEASURES: One hour after the final administration, immunohistochemical analysis was used to determine Aβ expression in the cortex and hippocampus of SAMP8 mice. Reverse-transcription polymerase chain reaction was used to determine mRNA levels of BACE and APP in SAMP8 brain tissue. RESULTS: Compared with the SAMR1 group, Aβ expression in the cerebral cortex and hippocampus, as well as expression of BACE, APP mRNA in the brain was significantly increased in the SAMP8 group (P 〈 0.05-0.01). Compared with the SAMP8 group, Aβ expression, as well as BACE and APP mRNA expression, were significantly decreased in the cerebral cortex and hippocampus of huperzine A and low-, middle-, and high-dose polysaccharides groups (P 〈 0.05-0.01). In particular, the effect of high-dose polysaccharides was the most significant (P 〈 0.05-0.01 ). CONCLUSION: Longyanshen polysaccharides reduced or inhibited over-expression of BACE, APP, and Aβ in SAMP8 mice in a dose-dependent manner, and the effect was not worse than huperzine A.展开更多
VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability...VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.展开更多
Glycosides of Cistanche(GC)is a preparation used extensively for its neuroprotective effect against neurological diseases,but its mechanisms of action remains incompletely understood.Here,we established a bilateral ...Glycosides of Cistanche(GC)is a preparation used extensively for its neuroprotective effect against neurological diseases,but its mechanisms of action remains incompletely understood.Here,we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC(10 mg/kg/day,intraperitoneally)for 14 consecutive days.Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta(Aβ)immunoreactivity in the hippocampus of the model rats.Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal6A after GC treatment compared with model rats that had received saline.Western blot assay confirmed these findings.Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration.展开更多
Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were ran...Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were randomly divided into five groups: the control group, the maltolate group (7.56 mg/kg BW), and the Al(mal)s groups (0.27, 0.54, and 1.08 mg/kg BW, respectively). Control rats were administered with 0.9% normal saline through intraperitoneal (i.p.) injection. Maltolate and Al(mal)s were administered to the rats also through i.p. injections. Administration was conducted daily for two months. Rat neural behavior was examined using open field tests (OFT). And the protein expressions and their mRNAs transcription related with APP catabolism were studied using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). Results The expressions of APP, 13-site APP cleaving enzyme 1 (BACEI) and presenilin-1 (PSi) proteins and their mRNAs transcription increased gradually with the increase of Al(mal)3 doses (P〈0.05). The enzyme activity of BACEI in the 0.54 and 1.08 mg/kg Al(mal)s groups increased significantly (P〈0.05). The expression of 8-amyloid protein (AS) 1-40 gradually decreased while the protein expression of A81-42 increased gradually with the increase of Al(mal)s doses (P〈0.05). Conclusion Result from our study suggested that one of the possible mechanisms that Al(mal)s can cause neurotoxicity is that Al(mal)s can increase the generation of A81-42 by facilitating the expressions of APP, β-, and γ-secretase.展开更多
Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and...Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons.展开更多
Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation ...Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation of β-site amyloid precursor protein expression in old age.However,further evidence is required to elucidate the precise relationship and molecular mechanisms underlying the effects of early lead exposure on excessive Aβ production in adult mammals.The present study investigated the effects of lead exposure on expression of β-amyloid precursor protein cleavage enzyme-1 (BACE-1) in the rat retina and the production of Aβ in early development,using the retina as a window for studying Alzheimer's disease.Adult rats were intraocularly injected with different doses of lead acetate (10μmol/L,100μmol/L,1 mmol/L,10 mmol/L and 100 mmol/L).The results revealed that retinal lead concentration,BACE-1 and its cleavage products β-C-terminal fragment and retina Aβ1-40 were all significantly increased in almost all of the lead exposure groups 48 hours later in a dose-dependent manner.The only exception was the 10μmol/L group.The distribution of BACE-1 in the retina did not exhibit obvious changes,and no distinctive increase in the activation of retinal microglia was apparent.Similarly,retinal synaptophysin expression did not exhibit any clear changes.These data suggest that lead exposure can result in the upregulation of retinal neuron BACE-1 expression in the early period of development and further increase the overproduction of Aβ1-40 in the retina.Our results provided novel insight into the molecular mechanisms underlying environmentally-induced Alzheimer's disease.展开更多
The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid pr...The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and r-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of AIzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.展开更多
Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SW...Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.展开更多
In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein i...In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease.展开更多
BACKGROUND: Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level. In addition, the piperlonguminine (A) and dihydropi...BACKGROUND: Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level. In addition, the piperlonguminine (A) and dihydropiperlonguminine (B) components (1 : 0.8), which can be separated from Futokadsura stem, selectively inhibit expression of the APP at mRNA and protein levels. OBJECTIVE: Based on previous findings, the present study investigated the effects of β-site amyloid precursor protein cleaving enzyme (BACE1) and APP genes on the production of β-amyloid peptide 42 (Aβ42) in human neuroblastoma cells (SK-N-SH cells) using small interfering RNAs (siRNAs) and A/B components separated from Futokadsura stem, respectively. DESIGN, TIME AND SETTING: A gene interference-based randomized, controlled, in vitro experiment was performed at the Key Laboratory of Cardiovascular Remodeling and Function Research, Ministries of Education and Public Health, and Institute of Pharmacologic Research, School of Pharmaceutical Science & Department of Biochemistry, School of Medicine, Shandong University between July 2006 and December 2007. MATERIALS: SK-N-SH cells were provided by Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China; mouse anti-human BACE1 monoclonal antibody was purchased from R&D Systems, USA; mouse anti-human APP monoclonal antibody was purchased from Cell Signaling Technology, USA; and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was provided by Sigma, USA. METHODS: The human BACE1 cDNA sequence was obtained from NCBI website (www.ncbi.nlm.nih.gov/sites/entrez). Three pairs of siRNAs, specific to human BACE1 gene, were synthesized through the use of Silencer pre-designed siRNA specification, and were transfected into SK-N-SH cells with siPORT NeoFX transfection agent to compare the effects of different concentrations of siRNAs (10-50 nmol/L) on SK-N-SH cells. Futokadsura stem was separated and purified with chemical methods, and the crystal was composed of A/B components, with an A to B ratio of 1:0.8. The A/B (1 : 0.8) components were added to the SK-N-SH cells at different concentrations (13.13, 6.56, and 3.28 mg/mL). MAIN OUTCOME MEASURES: Using RT-PCR and Western blot methods, BACE1 and APP expression at mRNA and protein levels was detected in SK-N-SH cells following treatment with different siRNAs and concentrations of Futokadsura stem-separated A/B components, respectively. Altered Aβ42 secretion by SK-N-SH cells was determined by ELISA. RESULTS: BACE1 mRNA and protein levels were significantly suppressed by 40 and 50 nmol/L siRNAs at 48 hours post-transfection. A/B components (1 : 0.8), which were separated from Futokadsura stem, selectively inhibited mRNA and protein expression of APP in SK-N-SH cells. Aβ42 secretion by SK-N-SH cells was significantly decreased following treatment with siRNAs or A/B components. CONCLUSION: Inhibition of BACE1 and APP genes by various materials and methods efficiently decreased production of Aβ42.展开更多
Objective: To investigate the neuroprotective effects of Syzygium aromaticum(S.aromaticum)extract(500 mg/kg) on AlCl_3(300 mg/kg)-induced mouse model of oxidative stress and neurotoxicity.Methods: An ethanolic extract...Objective: To investigate the neuroprotective effects of Syzygium aromaticum(S.aromaticum)extract(500 mg/kg) on AlCl_3(300 mg/kg)-induced mouse model of oxidative stress and neurotoxicity.Methods: An ethanolic extract of S.aromaticum seeds was prepared and the active compounds were identified using nuclear magnetic resonance spectroscopy.BALB/c mice were divided into five groups(negative control, AlCl_3-treated, self-recovery, AlCl_3 + S.aromaticum, S.aromaticum only; n=10) and treated with AlCl_3 and S.aromaticum extract.Expression of oxidative markers [Superoxide dismutase 1(SOD1) and peroxiredoxin 6(Prdx6)] and amyloid precursor protein(APP) in the hippocampus and cortex was evaluated via PCR.Histopathological assessment was performed to investigate the extent of neurodegeneration.Results: It was observed that AlCl_3 exposure increased the expression of APP770 while simultaneously down regulated the expression of APP695.AlCl_3 also induced a significant decrease(P<0.05) and an increase(P<0.05) in the expression level of SOD1 and Prdx6, respectively.A substantial decrease substantial(P<0.05) in the density of Nissl substance was also observed in cortex of the mice treated with AlCl_3.Interestingly, treatment with S.aromaticum extract normalized the alterations in the expression level of SOD1, Prdx6 and APPisoforms and improved the neuronal structural damage.Conclusions: The results showed that S.aromaticum is a promising antioxidant and a neuroprotective agent.展开更多
To analyze whether expressed amyloid precursor protein(APP) existed in hydrophilic(cytoplasmid) or hydrophobic(lipid bilayer) environment in E. coli and to obtain intact APP for study on its function, we investi...To analyze whether expressed amyloid precursor protein(APP) existed in hydrophilic(cytoplasmid) or hydrophobic(lipid bilayer) environment in E. coli and to obtain intact APP for study on its function, we investigated the expression characterization and preparation of the three intact isoforms APP770, APP751, and APP695 in E. coll. The results show that these expressed APPs existed both in hydrophilic cytoplasm region as inclusion bodies and hydrophobic membrane region as membrane-bound state in E. coll. APPs in inclusion bodies were purified on an NTA-Ni^2+ agarose column after dissolving in the urea buffer and APPs in membrane-bound state were obtained by ultracentrifugation. The activity analysis indicates that APP770 and APP751 exhibited strong trypsin-inhibitory activity like the natural ones. These results indicate that E. coli cells can be used as host cells for the expression of human integral membrane protein like APP in either soluble or membrane-bound state unless the interest protein undergone post-translational modification is required.展开更多
文摘The profile of polypeptides separated by SDS-PAGE from seed of major crop species such as pea (Pisum sativum) is complex, resulting from cleavage (processing) of precursors expressed from multiple copies of genes encoding vicilin and legumin, the major storage globulins. Translation in vitro of mRNAs hybrid-selected from mid-maturation pea seed RNAs by denned vicilin and legumin cDNA clones provided precursor molecules that were cleaved in vitro by a cell-free protease extract obtained from similar stage seed; the derived polypep tides were of comparable sizes to those observed in vivo. The feasibility of transcribing mENA in vitro from a cDNA clone and cleavage in vitro of the derived translation products was established for a legumin clone, providing a method for determining polypeptide products of an expressed sequence. This approach will also be useful for characterising cleavage site requirements since modifications an readily be introduced at the DNA level.
文摘AIM:The current study was to determine the serum/pLasma levels of VEGF,IL-6,malondialdehyde (MDA),nitric oxide (NO),PCT and CRP in gastric carcinoma and correlation with the stages of the disease and accompanying infection. METHODS:We examined the levels of serum VEGF,IL-6, PCT,CRP and plasma MDA,NO in 42 preoperative gastric cancer patients and 23 healthy subjects.There were infection anamneses that had no definite origin in 19 cancer patients. RESULTS:The VEGF levels (mean±SD; pg/mL) were 478.05±178.29 and 473.85±131.24 in gastric cancer patients with and without infection,respectively,and these values were not significantly different (P>0.05).The levels of VEGF, CRP,PCT,It-6,MDA and NO in cancer patients were significantly higher than those in healthy controls and the levels of CRP,PCT,It-6,MDA and NO were statistically increased in infection group when compared with non- infection group (P<0.001). CONCLUSION:Although serum VEGF concentrations were increased in gastric cancer,this increase might not be related to infection.CRP,PCT,IL-6,MDA and NO have obvious drawbacks in the diagnosis of infections in cancer patients. These markers may not help to identify infections in the primary evaluation of cancer patients and hence to avoid unnecessary antibiotic treatments as well as hospitalization. According to the results of this study,IL-6,MDA,NO and especially VEGF can be used as useful parameters to diagnose and grade gastric cancer.
文摘Alzheimer’s disease is a neurological disorder marked by the accumulation of amyloid beta(Aβ)aggregates,resulting from mutations in the amyloid precursor protein.The enzymeβ-secretase,also known asβ-site amyloid precursor protein cleaving enzyme 1(BACE1),plays a crucial role in generating Aβpeptides.With no targeted therapy available for Alzheimer’s disease,inhibiting BACE1 aspartic protease has emerged as a primary treatment target.Since 1999,compounds demonstrating potential binding to the BACE1 receptor have advanced to human trials.Structural optimization of synthetically derived compounds,coupled with computational approaches,has offered valuable insights for developing highly selective leads with drug-like properties.This review highlights pivotal studies on the design and development of BACE1 inhibitors as anti-Alzheimer’s disease agents.It summarizes computational methods employed in facilitating drug discovery for potential BACE1 inhibitors and provides an update on their clinical status,indicating future directions for novel BACE1 inhibitors.The promising clinical results of Elenbecestat(E-2609)catalyze the development of effective,selective BACE1 inhibitors in the future.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
文摘Objective To investigate the proteolytic mechanism of amyloid precursor protein (APP) and to explore amyloidbeta (Aβ) generation in living neurons. Methods DNA fragments were amplified by PCR or synthesized. The four fragments, CFP, 54bp, YFP and C99 were ligated into pcDNA3.0 vector to construct the recombinant plasmids pcDNA3.0-CFP-54bp- YFP and pcDNA3.0-CFP-54bp-YFP-C99. The SH-SY5Y cells were transiently transfected with pcDNA3.0-CFP-54bp-YFP or pcDNA3.0-CFP-54bp-YFP-C99. The expression of fusion gene was examined under a multiphoton laser scanning microscope. Fluorescence resonance energy transfer (FRET) was used to measure the β cleavage and γ cleavage of APE Aβ generation was confirmed by immunocytochemistry and multiphoton laser scanning microscopy. Cell viability was tested by MTT assay at different time points. Results (1) The double restriction endonuclease digestion and sequencing analysis confirmed the authenticity of the recombinant plasmids pcDNA3.0-CFP-54bp-YFP and pcDNA3.0-CFP-54bp- YFP-C99. (2) Blue and yellow fluorescences were detected in the transfected cells. (3) FRET occurred in pcDNA3.0-CFP- 54bp-YFP-transfected cells but not in pcDNA3.0-CFP-54bp-YFP-C99-transfected cells. (4) Aβ was produced in the pcDNA3.0- CFP-54bp-YFP-C99 transfected cells. (5) Aβ-deposition was widespread in the cell. (6) Cell viability decreased along with the intracellular Aβ deposition. Conclusion C99 is important for the APP β cleavage. Aβ may be generated and deposited in cells at the early stage of Alzheimer's disease. Intracellular Aβ accumulation brings deleterious effects on cells.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金supported by the Bureau of Traditional Chinese Medicine of Guangdong Province, No. 2010463the National Science and Technology"12~(th) Five-years"Major Special-purpose Foundation,No.2011ZX09201-201-01
文摘After gene mutation, the pcDNA3.1/APP595/596 plasmid was transfected into HEK293 cells to establish a cell model of Alzheimer's disease. The cell model was treated with donepezil or compound Danshen tablets after culture for 72 hours. Reverse transcription-PCR showed that the mRNA expression of amyloid protein precursor decreased in all groups following culture for 24 hours, and that there was no significant difference in the amount of decrease between donepezil and compound Danshen tablets. Our results suggest that compound Danshen tablets can reduce expression of the mRNA for amyloid protein precursor in a transgenic cell model of Alzheimer's disease, with similar effects to donepezil.
基金the National Natural Science Foundation of China, No: 30560189
文摘BACKGROUND: The pharmacological actions of Panax notoginseng saponins (PNS) lie in removing free radicals, anti-inflammation and anti-oxygenation. It can also improve memory and behavior in rat models of Alzheimer's disease. OBJECTIVE: Using the Morris water maze, immunohistochemistry, real-time PCR and RT-PCR, this study aimed to measure improvement in spatial learning, memory, expression of amyloid precursor protein (App) and β -amyloid (A β ), to investigate the mechanism of action of PNS in the treatment of AD in the senescence accelerated mouse-prone 8 (SAMP8) and compare the effects with huperzine A. DESIGN, TIME AND SETTING: A completely randomized grouping design, controlled animal experiment was performed in the Center for Research & Development of New Drugs, Guangxi Traditional Chinese Medical University from July 2005 to April 2007. MATERIALS: Sixty male SAMP8 mice, aged 3 months, purchased from Tianjin Chinese Traditional Medical University of China, were divided into four groups: PNS high-dosage group, PNS low-dosage group, huperzine A group and control group. PNS was provided by Weihe Pharmaceutical Co., Ltd. (batch No.: Z53021485, Yuxi, Yunan Province, China). Huperzine A was provided by Zhenyuan Pharmaceutical Co., Ltd. (batch No.: 20040801, Zhejiang, China). METHODS: The high-dosage group and low-dosage group were treated with 93.50 and 23.38 mg/kg PNS respectively per day and the huperzine A group was treated with 0.038 6 mg/kg huperzine A per day, all by intragastric administration, for 8 consecutive weeks. The same volume of double distilled water was given to the control group. MAIN OUTCOME MEASURES: After drug administration, learning and memory abilities were assessed by place navigation and spatial probe tests. The recording indices consisted of escape latency (time-to-platform), and the percentage of swimming time spent in each quadrant. The number of A β 1-40, A β 1-42 and App immunopositive neurons in the brains of SAMP8 mice was analyzed by immunohistochemistry. The mRNA content ofApp, tau, acetylcholinesterase, and synaptophysin (Syp) was tested by real time PCR and RT-PCR. RESULTS: The PCR results show that PNS can downregulate the expression of the App gene and upregulate the expression of the Syp gene in the parietal cortex and hippocampus of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than those of the PNS low-dosage group and the huperzine A group (P 〈 0.05). The results of the Morris water maze and immunohistochemistry indicated that PNS can improve the capacity for spatial learning and memory in SAMP8 mice, and reduce the content of A β 1-40, A β 1-42 and expression of App in the brains of SAMP8 mice. The therapeutic effects of the PNS high-dosage group were greater than that of the PNS low-dosage group and the huperzine A group (P 〈 0.05). CONCLUSION: These results support the hypothesis that PNS plays a therapeutic and protective role on the pathological lesions and learning dysfunction of Alzheimer's disease. The therapeutic effects of PNS for Alzheimer's disease are possibly achieved through downregulating the expression of the App gene and upregulating the expression of the Syp gene. The therapeutic effects of PNS are dose-dependent and are greater than the effect of huperzine A.
基金Supported by:Guangxi Scientific Research and Technological Development Program,No.0630002-2ADoctoral Research and Innovation Program of Guangxi Graduate Education,No, 2007105981007D10
文摘BACKGROUND: During onset and development of Alzheimer's disease, β-amyloid (Aβ) precursor protein (APP), β-site amyloid precursor protein cleaving enzyme (BACE), and β-amyloid are key genes and proteins in the Aβ pathway, and over-expression of these genes can lead to Aβ deposit/on in the brain. OBJECTIVE: To observe the influence of Longyanshen polysaccharides on expression of BACE, APP, and Aβ in the senescence-accelerated mouse prone/8 (SAMP8) brain, and to compare these effects with huperzine A treatment. DESIGN, TIME AND SETTING: A randomized, controlled, neurobiochemical experiment was performed at the Department of Pharmacology and Scientific Experimental Center of Guangxi Medical University from September 2005 to January 2008. MATERIALS: Longyanshen polysaccharfdes powder was extracted from the dried slices of the medicinal plant Longyanshen. The active component, Longyanshen polysaccharides, was provided by the Department of Pharmacology, Guangxi Medical University; huperzine A was purchased from Yuzhong Drug Manufactory, China. METHODS: Healthy SAMP8 mice were used to establish a model of Alzheimer's disease. A total of 50 SAMP8 mice were randomly assigned to 5 groups (n = 10): SAMP8, huperzine A, low-, middle-, and high-dose polysaccharides. In addition, 10 senescence-accelerated mouse resistant 1 (SAMR1) mice were selected as normal controls. SAMP8 and SAMR1 mice were administered 30 mL/kg normal saline; the huperzine A group was administered 0.02 mg/kg huperzine A; the low-, middle-, and high-dose polysaccharides groups were respectively administered 45, 90, and 180 mg/kg Longyanshen polysaccharides. Each group was treated by intragastric administration, once per day, for 50 consecutive days. MAIN OUTCOME MEASURES: One hour after the final administration, immunohistochemical analysis was used to determine Aβ expression in the cortex and hippocampus of SAMP8 mice. Reverse-transcription polymerase chain reaction was used to determine mRNA levels of BACE and APP in SAMP8 brain tissue. RESULTS: Compared with the SAMR1 group, Aβ expression in the cerebral cortex and hippocampus, as well as expression of BACE, APP mRNA in the brain was significantly increased in the SAMP8 group (P 〈 0.05-0.01). Compared with the SAMP8 group, Aβ expression, as well as BACE and APP mRNA expression, were significantly decreased in the cerebral cortex and hippocampus of huperzine A and low-, middle-, and high-dose polysaccharides groups (P 〈 0.05-0.01). In particular, the effect of high-dose polysaccharides was the most significant (P 〈 0.05-0.01 ). CONCLUSION: Longyanshen polysaccharides reduced or inhibited over-expression of BACE, APP, and Aβ in SAMP8 mice in a dose-dependent manner, and the effect was not worse than huperzine A.
文摘VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.
基金supported by the National Natural Science Foundation of China,No.30960520the Natural Science Foundation of Inner Mongolia Autonomous Region of China,No.2016MS0837
文摘Glycosides of Cistanche(GC)is a preparation used extensively for its neuroprotective effect against neurological diseases,but its mechanisms of action remains incompletely understood.Here,we established a bilateral common carotid artery occlusion model of vascular dementia in rats and injected the model rats with a suspension of GC(10 mg/kg/day,intraperitoneally)for 14 consecutive days.Immunohistochemistry showed that GC significantly reduced p-tau and amyloid beta(Aβ)immunoreactivity in the hippocampus of the model rats.Proteomic analysis demonstrated upregulation of mitochondrial precursor protein and downregulation of keratin type II cytoskeletal6A after GC treatment compared with model rats that had received saline.Western blot assay confirmed these findings.Our results suggest that the neuroprotective effect of GC in vascular dementia occurs via the promotion of neuronal cytoskeleton regeneration.
基金supported by the National Natural Science Foundation of China (30972512)the Graduate Innovation Fund of Academic Degree Committee Office of the Shanxi Provincial Government (20093014)+1 种基金Doctor Start-up Fund from Shanxi Medical University (B03201209)the College Students Innovation Fund of Shanxi Medical University (2010-25)
文摘Objective To investigate the impact of sub-chronic Aluminium-maltolate [Al(mal)s] exposure on the catabolism of amyloid precursor protein (APP) in rats. Methods Forty adult male Sprague-Dawley (SD) rats were randomly divided into five groups: the control group, the maltolate group (7.56 mg/kg BW), and the Al(mal)s groups (0.27, 0.54, and 1.08 mg/kg BW, respectively). Control rats were administered with 0.9% normal saline through intraperitoneal (i.p.) injection. Maltolate and Al(mal)s were administered to the rats also through i.p. injections. Administration was conducted daily for two months. Rat neural behavior was examined using open field tests (OFT). And the protein expressions and their mRNAs transcription related with APP catabolism were studied using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). Results The expressions of APP, 13-site APP cleaving enzyme 1 (BACEI) and presenilin-1 (PSi) proteins and their mRNAs transcription increased gradually with the increase of Al(mal)3 doses (P〈0.05). The enzyme activity of BACEI in the 0.54 and 1.08 mg/kg Al(mal)s groups increased significantly (P〈0.05). The expression of 8-amyloid protein (AS) 1-40 gradually decreased while the protein expression of A81-42 increased gradually with the increase of Al(mal)s doses (P〈0.05). Conclusion Result from our study suggested that one of the possible mechanisms that Al(mal)s can cause neurotoxicity is that Al(mal)s can increase the generation of A81-42 by facilitating the expressions of APP, β-, and γ-secretase.
基金the National Natural Science Foundation of China,No. 30873230Beijing Natural Science Foundation,No. 7092014+1 种基金Scientific Research Common Program of Beijing Municipal Education Commission,No. KM2007100025015Fund-ing Project for Academic Human Resources Devel-opment in Institutions of Higher Learning Under the Jurisdiction of Beijing Mu-nicipality,No. PHR201008401
文摘Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons.
基金the National Natural Science Foundation of China,No.30900773the National University Basic Research Foundation of China,No.2010QZZD022
文摘Previous studies have reported that non-human primates and rodents exposed to lead during brain development may become dependent on the deposition of pre-determined β-amyloid protein (Aβ),and exhibit upregulation of β-site amyloid precursor protein expression in old age.However,further evidence is required to elucidate the precise relationship and molecular mechanisms underlying the effects of early lead exposure on excessive Aβ production in adult mammals.The present study investigated the effects of lead exposure on expression of β-amyloid precursor protein cleavage enzyme-1 (BACE-1) in the rat retina and the production of Aβ in early development,using the retina as a window for studying Alzheimer's disease.Adult rats were intraocularly injected with different doses of lead acetate (10μmol/L,100μmol/L,1 mmol/L,10 mmol/L and 100 mmol/L).The results revealed that retinal lead concentration,BACE-1 and its cleavage products β-C-terminal fragment and retina Aβ1-40 were all significantly increased in almost all of the lead exposure groups 48 hours later in a dose-dependent manner.The only exception was the 10μmol/L group.The distribution of BACE-1 in the retina did not exhibit obvious changes,and no distinctive increase in the activation of retinal microglia was apparent.Similarly,retinal synaptophysin expression did not exhibit any clear changes.These data suggest that lead exposure can result in the upregulation of retinal neuron BACE-1 expression in the early period of development and further increase the overproduction of Aβ1-40 in the retina.Our results provided novel insight into the molecular mechanisms underlying environmentally-induced Alzheimer's disease.
基金supported by the National Natural Science Foundation of China, No. 81171192XMU Basic Training Program of Undergraduate, No. CXB2011019Visiting Scholar Fellowship of Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering of Xiamen University, No. 201101
文摘The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease, Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and r-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of AIzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.
基金supported by the National Natural Science Foundation of China, No. 81171191Shenzhen Bureau of Science Technology and Information, No. 201002013+1 种基金Guangdong Province Medical Science Fund, No. A2008601 and Jinan University Scientific Research Foundation for Creation and Cultivation, No. 21609708
文摘Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity.
基金supported by the Natural Science Foundation of Guangdong Province,China,No.8151051501000004
文摘In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease.
基金the National Natural Science Foundation of China,No. NSFC-3027164
文摘BACKGROUND: Previous studies have demonstrated that Piper futokadsura stem selectively inhibits expression of amyloid precursor protein (APP) at the mRNA level. In addition, the piperlonguminine (A) and dihydropiperlonguminine (B) components (1 : 0.8), which can be separated from Futokadsura stem, selectively inhibit expression of the APP at mRNA and protein levels. OBJECTIVE: Based on previous findings, the present study investigated the effects of β-site amyloid precursor protein cleaving enzyme (BACE1) and APP genes on the production of β-amyloid peptide 42 (Aβ42) in human neuroblastoma cells (SK-N-SH cells) using small interfering RNAs (siRNAs) and A/B components separated from Futokadsura stem, respectively. DESIGN, TIME AND SETTING: A gene interference-based randomized, controlled, in vitro experiment was performed at the Key Laboratory of Cardiovascular Remodeling and Function Research, Ministries of Education and Public Health, and Institute of Pharmacologic Research, School of Pharmaceutical Science & Department of Biochemistry, School of Medicine, Shandong University between July 2006 and December 2007. MATERIALS: SK-N-SH cells were provided by Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China; mouse anti-human BACE1 monoclonal antibody was purchased from R&D Systems, USA; mouse anti-human APP monoclonal antibody was purchased from Cell Signaling Technology, USA; and horseradish peroxidase (HRP)-conjugated goat anti-mouse IgG was provided by Sigma, USA. METHODS: The human BACE1 cDNA sequence was obtained from NCBI website (www.ncbi.nlm.nih.gov/sites/entrez). Three pairs of siRNAs, specific to human BACE1 gene, were synthesized through the use of Silencer pre-designed siRNA specification, and were transfected into SK-N-SH cells with siPORT NeoFX transfection agent to compare the effects of different concentrations of siRNAs (10-50 nmol/L) on SK-N-SH cells. Futokadsura stem was separated and purified with chemical methods, and the crystal was composed of A/B components, with an A to B ratio of 1:0.8. The A/B (1 : 0.8) components were added to the SK-N-SH cells at different concentrations (13.13, 6.56, and 3.28 mg/mL). MAIN OUTCOME MEASURES: Using RT-PCR and Western blot methods, BACE1 and APP expression at mRNA and protein levels was detected in SK-N-SH cells following treatment with different siRNAs and concentrations of Futokadsura stem-separated A/B components, respectively. Altered Aβ42 secretion by SK-N-SH cells was determined by ELISA. RESULTS: BACE1 mRNA and protein levels were significantly suppressed by 40 and 50 nmol/L siRNAs at 48 hours post-transfection. A/B components (1 : 0.8), which were separated from Futokadsura stem, selectively inhibited mRNA and protein expression of APP in SK-N-SH cells. Aβ42 secretion by SK-N-SH cells was significantly decreased following treatment with siRNAs or A/B components. CONCLUSION: Inhibition of BACE1 and APP genes by various materials and methods efficiently decreased production of Aβ42.
基金supported by research grant by National University of Sciences and Technology (NUST), Islamabad, Pakistan
文摘Objective: To investigate the neuroprotective effects of Syzygium aromaticum(S.aromaticum)extract(500 mg/kg) on AlCl_3(300 mg/kg)-induced mouse model of oxidative stress and neurotoxicity.Methods: An ethanolic extract of S.aromaticum seeds was prepared and the active compounds were identified using nuclear magnetic resonance spectroscopy.BALB/c mice were divided into five groups(negative control, AlCl_3-treated, self-recovery, AlCl_3 + S.aromaticum, S.aromaticum only; n=10) and treated with AlCl_3 and S.aromaticum extract.Expression of oxidative markers [Superoxide dismutase 1(SOD1) and peroxiredoxin 6(Prdx6)] and amyloid precursor protein(APP) in the hippocampus and cortex was evaluated via PCR.Histopathological assessment was performed to investigate the extent of neurodegeneration.Results: It was observed that AlCl_3 exposure increased the expression of APP770 while simultaneously down regulated the expression of APP695.AlCl_3 also induced a significant decrease(P<0.05) and an increase(P<0.05) in the expression level of SOD1 and Prdx6, respectively.A substantial decrease substantial(P<0.05) in the density of Nissl substance was also observed in cortex of the mice treated with AlCl_3.Interestingly, treatment with S.aromaticum extract normalized the alterations in the expression level of SOD1, Prdx6 and APPisoforms and improved the neuronal structural damage.Conclusions: The results showed that S.aromaticum is a promising antioxidant and a neuroprotective agent.
基金Supported by the Fund from Science & Technology Department of Jilin Province, China(Nos.20060725, 20070926-02).
文摘To analyze whether expressed amyloid precursor protein(APP) existed in hydrophilic(cytoplasmid) or hydrophobic(lipid bilayer) environment in E. coli and to obtain intact APP for study on its function, we investigated the expression characterization and preparation of the three intact isoforms APP770, APP751, and APP695 in E. coll. The results show that these expressed APPs existed both in hydrophilic cytoplasm region as inclusion bodies and hydrophobic membrane region as membrane-bound state in E. coll. APPs in inclusion bodies were purified on an NTA-Ni^2+ agarose column after dissolving in the urea buffer and APPs in membrane-bound state were obtained by ultracentrifugation. The activity analysis indicates that APP770 and APP751 exhibited strong trypsin-inhibitory activity like the natural ones. These results indicate that E. coli cells can be used as host cells for the expression of human integral membrane protein like APP in either soluble or membrane-bound state unless the interest protein undergone post-translational modification is required.