The algorithm based on combination learning usually is superior to a singleclassification algorithm on the task of protein secondary structure prediction. However,the assignment of the weight of the base classifier us...The algorithm based on combination learning usually is superior to a singleclassification algorithm on the task of protein secondary structure prediction. However,the assignment of the weight of the base classifier usually lacks decision-makingevidence. In this paper, we propose a protein secondary structure prediction method withdynamic self-adaptation combination strategy based on entropy, where the weights areassigned according to the entropy of posterior probabilities outputted by base classifiers.The higher entropy value means a lower weight for the base classifier. The final structureprediction is decided by the weighted combination of posterior probabilities. Extensiveexperiments on CB513 dataset demonstrates that the proposed method outperforms theexisting methods, which can effectively improve the prediction performance.展开更多
Protein structure prediction is one of the most essential objectives practiced by theoretical chemistry and bioinformatics as it is of a vital importance in medicine,biotechnology and more.Protein secondary structure ...Protein structure prediction is one of the most essential objectives practiced by theoretical chemistry and bioinformatics as it is of a vital importance in medicine,biotechnology and more.Protein secondary structure prediction(PSSP)has a significant role in the prediction of protein tertiary structure,as it bridges the gap between the protein primary sequences and tertiary structure prediction.Protein secondary structures are classified into two categories:3-state category and 8-state category.Predicting the 3 states and the 8 states of secondary structures from protein sequences are called the Q3 prediction and the Q8 prediction problems,respectively.The 8 classes of secondary structures reveal more precise structural information for a variety of applications than the 3 classes of secondary structures,however,Q8 prediction has been found to be very challenging,that is why all previous work done in PSSP have focused on Q3 prediction.In this paper,we develop an ensemble Machine Learning(ML)approach for Q8 PSSP to explore the performance of ensemble learning algorithms compared to that of individual ML algorithms in Q8 PSSP.The ensemble members considered for constructing the ensemble models are well known classifiers,namely SVM(Support Vector Machines),KNN(K-Nearest Neighbor),DT(Decision Tree),RF(Random Forest),and NB(Naïve Bayes),with two feature extraction techniques,namely LDA(Linear Discriminate Analysis)and PCA(Principal Component Analysis).Experiments have been conducted for evaluating the performance of single models and ensemble models,with PCA and LDA,in Q8 PSSP.The novelty of this paper lies in the introduction of ensemble learning in Q8 PSSP problem.The experimental results confirmed that ensemble ML models are more accurate than individual ML models.They also indicated that features extracted by LDA are more effective than those extracted by PCA.展开更多
The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure p...The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure prediction.Most of the existing computational techniques for protein structural and functional prediction are based onmachine learning with shallowframeworks.Different deep learning architectures have already been applied to tackle protein secondary structure prediction problem.In this study,deep learning based models,i.e.,convolutional neural network and long short-term memory for protein secondary structure prediction were proposed.The input to proposed models is amino acid sequences which were derived from CulledPDB dataset.Hyperparameter tuning with cross validation was employed to attain best parameters for the proposed models.The proposed models enables effective processing of amino acids and attain approximately 87.05%and 87.47%Q3 accuracy of protein secondary structure prediction for convolutional neural network and long short-term memory models,respectively.展开更多
The folding dynamics and structural characteristics of peptides RTKAWNRQLYPEW (P1) and RTKQLYPEW (P2) are investigated by using all-atomic simulation procedure CHARMM in this work. The results show that P1, a segm...The folding dynamics and structural characteristics of peptides RTKAWNRQLYPEW (P1) and RTKQLYPEW (P2) are investigated by using all-atomic simulation procedure CHARMM in this work. The results show that P1, a segment of an antigen, has a folding motif of α-helix, whereas P2, which is derived by deleting four residues AWNR from peptide P1, prevents the formation of helix and presents a β-strand. And peptlde P1 experiences a more rugged energy landscape than peptide P2. From our results, it is inferred that the antibody CD8 cytolytic T lymphocyte prefers an antigen with a β-folding structure to that with an α-helical one.展开更多
文摘The algorithm based on combination learning usually is superior to a singleclassification algorithm on the task of protein secondary structure prediction. However,the assignment of the weight of the base classifier usually lacks decision-makingevidence. In this paper, we propose a protein secondary structure prediction method withdynamic self-adaptation combination strategy based on entropy, where the weights areassigned according to the entropy of posterior probabilities outputted by base classifiers.The higher entropy value means a lower weight for the base classifier. The final structureprediction is decided by the weighted combination of posterior probabilities. Extensiveexperiments on CB513 dataset demonstrates that the proposed method outperforms theexisting methods, which can effectively improve the prediction performance.
文摘Protein structure prediction is one of the most essential objectives practiced by theoretical chemistry and bioinformatics as it is of a vital importance in medicine,biotechnology and more.Protein secondary structure prediction(PSSP)has a significant role in the prediction of protein tertiary structure,as it bridges the gap between the protein primary sequences and tertiary structure prediction.Protein secondary structures are classified into two categories:3-state category and 8-state category.Predicting the 3 states and the 8 states of secondary structures from protein sequences are called the Q3 prediction and the Q8 prediction problems,respectively.The 8 classes of secondary structures reveal more precise structural information for a variety of applications than the 3 classes of secondary structures,however,Q8 prediction has been found to be very challenging,that is why all previous work done in PSSP have focused on Q3 prediction.In this paper,we develop an ensemble Machine Learning(ML)approach for Q8 PSSP to explore the performance of ensemble learning algorithms compared to that of individual ML algorithms in Q8 PSSP.The ensemble members considered for constructing the ensemble models are well known classifiers,namely SVM(Support Vector Machines),KNN(K-Nearest Neighbor),DT(Decision Tree),RF(Random Forest),and NB(Naïve Bayes),with two feature extraction techniques,namely LDA(Linear Discriminate Analysis)and PCA(Principal Component Analysis).Experiments have been conducted for evaluating the performance of single models and ensemble models,with PCA and LDA,in Q8 PSSP.The novelty of this paper lies in the introduction of ensemble learning in Q8 PSSP problem.The experimental results confirmed that ensemble ML models are more accurate than individual ML models.They also indicated that features extracted by LDA are more effective than those extracted by PCA.
文摘The secondary structure of a protein is critical for establishing a link between the protein primary and tertiary structures.For this reason,it is important to design methods for accurate protein secondary structure prediction.Most of the existing computational techniques for protein structural and functional prediction are based onmachine learning with shallowframeworks.Different deep learning architectures have already been applied to tackle protein secondary structure prediction problem.In this study,deep learning based models,i.e.,convolutional neural network and long short-term memory for protein secondary structure prediction were proposed.The input to proposed models is amino acid sequences which were derived from CulledPDB dataset.Hyperparameter tuning with cross validation was employed to attain best parameters for the proposed models.The proposed models enables effective processing of amino acids and attain approximately 87.05%and 87.47%Q3 accuracy of protein secondary structure prediction for convolutional neural network and long short-term memory models,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90103031, 10474041, 90403120 and 10021001), and the Nonlinear Project (973) of the NSM.
文摘The folding dynamics and structural characteristics of peptides RTKAWNRQLYPEW (P1) and RTKQLYPEW (P2) are investigated by using all-atomic simulation procedure CHARMM in this work. The results show that P1, a segment of an antigen, has a folding motif of α-helix, whereas P2, which is derived by deleting four residues AWNR from peptide P1, prevents the formation of helix and presents a β-strand. And peptlde P1 experiences a more rugged energy landscape than peptide P2. From our results, it is inferred that the antibody CD8 cytolytic T lymphocyte prefers an antigen with a β-folding structure to that with an α-helical one.