Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3...Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.展开更多
The conventional protein chromatography technique was adopted to purify the antifreeze proteins (AFPs) from the leaves of Ammopiptanthus mongolicus (Maxim.) Cheng f. Two bands on native PAGE gel showed thermal hys...The conventional protein chromatography technique was adopted to purify the antifreeze proteins (AFPs) from the leaves of Ammopiptanthus mongolicus (Maxim.) Cheng f. Two bands on native PAGE gel showed thermal hysteresis activity, one was band B1, whose thermal hysteresis was 0.46 ℃ at 8 g/L, which showed two bands (67 kD, 21 kD) on SDS_PAGE gel; the other was B3, whose thermal hysteresis was 0.45 ℃ at 10 g/L, and it contained only a single protein (39.8 kD). Both B1 and B3 are not glycoproteins, because neither do they interact with Shiff_reagent, nor show ultraviolet characteristics of a typical glycoprotein.展开更多
In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the prolifer...In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability.展开更多
The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully unders...The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.展开更多
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli...Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.展开更多
Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting...Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles.展开更多
A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles...A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs.展开更多
Rat protein DE is an androgen-dependent cysteine-rich secretory protein (CRISP) synthesized by proximal epididymal regions. DE, also known as CRISP-1, is localized on the equatorial segment of acrosome-reacted sperm...Rat protein DE is an androgen-dependent cysteine-rich secretory protein (CRISP) synthesized by proximal epididymal regions. DE, also known as CRISP-1, is localized on the equatorial segment of acrosome-reacted spermatozoa and participates in gamete fusion through binding to egg complementary sites. Immunization of rats with DE inhibits fertility and sperm fusion ability, suggesting that DE represents a good epididymal contraceptive target. Recombinant DE fragments and synthetic peptides revealed that DE binds to the egg via a 12-amino acid region of an evolutionarily conserved motif, Signature 2 (S2). The ability of other CRISP to bind to the rat egg was correlated with their S2 amino acid sequences. Although testicular protein Tpx- 1 (CRISP-2) was capable of binding to rodent eggs, human epididymal AEG-related protein (ARP) and helothermine (from lizard saliva) were not. The S2 region presented only two substitutions in Tpx-1 and four in ARP and helothermine, compared with the DE S2, suggesting that this amino acid sequence was relevant for egg interaction. Studies with Tpx- 1 and anti-Tpx- 1 revealed the participation of this protein in gamete fusion through binding to complementary sites in the egg. In competition studies, DE reduced binding of Tpx- 1 dose-dependently, indicating that both CRISP share the egg complementary sites. That anti-DE and anti-Tpx-1 inhibit sperm-egg fusion while recognizing only the corresponding proteins, suggests functional cooperation between these homologous CRISP to ensure fertilization success. These results increase our understanding of the molecular mechanisms of gamete fusion and contribute to the development of new and safer fertility regulating methods. (Asian J Androl 2007 July; 9: 528-532)展开更多
The present study established a rat model of vascular dementia induced by chronic cerebral hypoperfusion through permanent ligation of bilateral common carotid arteries.At 60 days after modeling,escape latency and swi...The present study established a rat model of vascular dementia induced by chronic cerebral hypoperfusion through permanent ligation of bilateral common carotid arteries.At 60 days after modeling,escape latency and swimming path length during hidden-platform acquisition training in Morris water maze significantly increased in the model group.In addition,the number of accurate crossings over the original platform significantly decreased,hippocampal CA1 synaptophysin and growth-associated protein 43 expression significantly decreased,cAMP response element-binding protein expression remained unchanged,and phosphorylated cAMP response element-binding protein expression significantly decreased.Results suggested that abnormal expression of hippocampal synaptic structural protein and cAMP response element-binding protein phosphorylation played a role in cognitive impairment following chronic cerebral hypoperfusion.展开更多
Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassi...Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis. This places individuals at risk of developing cirrhosis, hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs. Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state. Pathological accumulation of cholesteryl ester (CE) in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease. Overconsumption of dietary fat, cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals. Dietary regimes have proven futile and barfing surgery, no realistic alternatives are at hand as effective drugs are few and not without side effects. Overweight and obesity-related diseases are no longer restricted to the developed world and as such, constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step, elucidation of the molecular pathophysiology underlying each associated disease state. The lipid droplet (LD), an up to now over- looked intracellular organelle, appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs. As the molecular machinery and mechanisms of LDs of each cell type are being elucidated, regulatory proteins used to control various cellular processes are emerging. Of these and the subject of this review, small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.展开更多
The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cul...The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cultivars of wheat (Triticum aestivum L.) exposed to 4℃. Plants were sampled on days 2, 14, 21 and 35 of exposure to 4℃. The final leaf number (FLN) was determined throughout the vernalization periods (0, 7, 14, 24, and 35 d) at 4℃. The final leaf number decreased until days 24 and 35 in Sardari and Norstar eultivars, respectively, indicating the vernalization saturation at these times. No clear changes were detected in the final leaf number of Kohdash cultivar, verifying no vernalization requirement for this spring wheat cultivar. Comparing with control, clear cold-induced 2-fold increases in proteins quantity occurred after 48 h following the 4℃-treatment in the leaves of the both winter wheat cultivars but, such response was not detected in the spring cultivar. However, the electrophoretic protein patterns showed between-cultivar and between-temperature treatment differences. With increasing exposure time to 4℃, the winter cultivars tended to produce more HMW polypeptides than the spring cultivar. Similar proteins were induced in both Sardari and Norstar winter wheat cultivars, however, the long vernalization requirement in Norstar resulted in high level and longer duration of expression of cold-induced proteins compared to Sardari with a short vernalization requirement. These observations indicate that vernalization response regulates the expression of low temperature (LT) tolerance proteins and determines the duration of expression of LT- induced proteins.展开更多
Objective To identify ubiquitinated proteins from complex human multiple myeloma (MM) U266 cells,a malignant disorder of differentiated human B cells.Methods Employing a globally proteomic strategy combining of immu...Objective To identify ubiquitinated proteins from complex human multiple myeloma (MM) U266 cells,a malignant disorder of differentiated human B cells.Methods Employing a globally proteomic strategy combining of immunoprecipitation,LC-MS/MS and SCX-LC-MS analysis to identified ubiquitination sites,which were identified by detecting signature peptides containing a GG-tag (114.1 Da) and an LRGG-tag (383.2 Da).Results In total,52 ubiquitinated proteins containing 73 ubiquitination sites of which 14 and 59 sites contained LRGG-tag and GG-tag were identified,respectively.Conclusion Classification analysis by of the proteins identified in the study based on the PANTHER showed that they were associated with multiple functional groups.This suggested the involvement of many endogenous proteins in the ubiquitination in MM.展开更多
Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have b...Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have been proposed to identify essential proteins. Unfortunately, most methods based on network topology only consider the interactions between a protein and its neighboring proteins, and not the interactions with its higher-order distance proteins. In this paper, we propose the DSEP algorithm in which we integrated network topology properties and subcellular localization information in protein–protein interaction(PPI) networks based on four-order distances, and then used random walks to identify the essential proteins. We also propose a method to calculate the finite-order distance of the network, which can greatly reduce the time complexity of our algorithm. We conducted a comprehensive comparison of the DSEP algorithm with 11 existing classical algorithms to identify essential proteins with multiple evaluation methods. The results show that DSEP is superior to these 11 methods.展开更多
Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called ...Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called lipid-associated membrane proteins (LAMPs). LAMPs are highly antigenic and could undergo phase and size variation, and are recognized by the innate immune system through Toll-like receptors (TLR) 2 and 6. LAMPs can modulate the immune system, and could induce immune cells apoptosis or death. In addition, they may associate with malignant transformation of host cells and are also con-sidered to be cofactors in the progression of AIDS.展开更多
Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and...Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.展开更多
SARS coronavirus (SARS-CoV) is the etiologic agent of severe acute respiratory syndrome. The aim of this study was to construct Sars-CoV membrane (M), nucleocapsid (N) and spike 2 ($2) gene eukaryotic expressi...SARS coronavirus (SARS-CoV) is the etiologic agent of severe acute respiratory syndrome. The aim of this study was to construct Sars-CoV membrane (M), nucleocapsid (N) and spike 2 ($2) gene eukaryotic expression plasmids, and identify their expression in vitro. Gene fragments encoding N protein, M protein and $2 protein of SARS-CoV were amplified by PCR using cDNA obtained from lung samples of SARS patients as template, and subcloned into pcDNA3.1 vector to form eukaryotic expression plasmids. SARS-CoV protein eukaryotic expression plasmids were transfected respectively into CHO cells. Immunohistochemistry was employed to detect the expression of the structural proteins of SARS-CoV in transfected cells. SARS-CoV protein eukaryotic expression plasmids were successfully constructed by identification with digestion of restriction enzymes and sequencing. M, N and S2 proteins of SARS-CoV were detected in the cytoplasm of transfected CHO cells. It was concluded that these recombinant eukaryotic expression plasmids were constructed successfully, and SARS-CoV encoding proteins could activate transcription and expression of hfgl2 gene.展开更多
AIM To determine the association of human antigen R(HuR) and inhibitors of apoptosis proteins(IAP1, IAP2) and prognosis in pancreatic cancer.METHODS Protein and mRNA expression levels of IAP1, IAP2 and HuR in pancreat...AIM To determine the association of human antigen R(HuR) and inhibitors of apoptosis proteins(IAP1, IAP2) and prognosis in pancreatic cancer.METHODS Protein and mRNA expression levels of IAP1, IAP2 and HuR in pancreatic ductal adenocarcinoma(PDAC) were compared with normal pancreatic tissue. The correlations among IAP1/IAP2 and HuR as well as their respective correlations with clinicopathological parameters were analyzed. The Kaplan-Meier method and log-rank tests were used for survival analysis. Immunoprecipitation assay was performed to demonstrate HuR binding to IAP1, IAP2 mRNA. PANC1 cells were transfected with either anti-HuR siRNA or control siRNA for 72 h and quantitative reverse transcription polymerase chain reaction(RT-PCR), western blot analysis was carried out.RESULTS RT-PCR analysis revealed that HuR, IAP1, IAP2 mRNA expression were accordingly 3.3-fold, 5.5-fold and 8.4 higher in the PDAC when compared to normal pancreas(P < 0.05). Expression of IAP1 was positively strongly correlated with HuR expression(P < 0.05, r = 0.783). Western blot analysis confirmed RTPCR results. High IAP1 expression, tumor resection status, T stage, lymph-node metastases, tumor differentiation grade, perineural and lymphatic invasion were identified as significant factors for shorter survival in PDAC patients(P < 0.05).Immunohistological analysis showed that HuR was mainly expressed in the ductal cancer cell's nucleus and less so in cytoplasm. RNA immunoprecipitation analysis confirmed IAP1 and IAP2 post-transcriptional regulation by HuR protein. Following siHuR transfection, IAP1 mRNA and protein levels were decreased, however IAP2 expression levels were increased.CONCLUSION HuR mediated overexpression of IAP1 significantly correlates with poor outcomes and early progression of pancreatic cancer. Further studies are needed to assess the underlying mechanisms.展开更多
AIM: To study the distribution pattern of transcription factors NF-kB and AP-1 and their relations with the expression of apoptosis associated-proteins Fas/FasL and ICH-1L/S in human hepatocellular carcinoma (HCC). ME...AIM: To study the distribution pattern of transcription factors NF-kB and AP-1 and their relations with the expression of apoptosis associated-proteins Fas/FasL and ICH-1L/S in human hepatocellular carcinoma (HCC). METHODS: We performed in situ hybridization and immunohistochemical techniques for NF-kB, AP-1, Fas/FasL and ICH-1 in 40 cases of human HCC along with corresponding nontumoral tissues and 7 cases of normal liver tissues. RESULTS: Twenty-two (55%) and 25 (62.5%) of 40 cases for NF-κB and AP-1 were presented for nuclear or both nuclear and cytoplastic staining respectively, while less cases were presented for only cytoplastic staining for NF-κB (18%) and AP-1 (10%) in adjacent nontumoral tissues and negative staining in normal liver tissues. There was no statistically significant difference of NF-κB or AP-1 activation between well differentiated tumors and poorly differentiated tumors (P>0.05). NF-κkB activity is positively corresponded to AP-1 activation. The expression of ICH-1L/S was associated with the activation of NF-κB and AP-1 (P<0.05), but no significant relationship was found between Fas/FasL and NF-κB or AP-l(P>0.05). CONCLUSION: Activation of both NF-κB and AP-1 may be required for ICH-1L/S-induced apoptosis in HCC, but not for Fas/FasL-mediated apoptosis. NF-κB and AP-1 may play important roles in the pathogenesis of human HCC.展开更多
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
文摘Plasmodium (P.) falciparum is a pathogen that causes severe forms of malaria. Protein interactions have been shown to occur between P. falciparum and human erythrocytes in human blood. The Band 3 Anion Transporter (B3AT) protein is considered the main invasive pathway for the parasite in erythrocytes that causes clinical symptoms for malaria in humans. The interactions between P. falciparum parasites and erythrocytes along this receptor have previously been explored. Short linear motifs (SLIMs) are short linear mediator sequences that involve several biological processes, acting as mediators of protein interactions identifiable by computational tools such as SLiMFinder. For a given protein, the identification of SLIMs allows predicting its interactors. Using the SLIMs approach, protein-protein interaction network analyses between P. falciparum and its human host, were used to identify a tryptophan-rich protein, A5K5E5_PLAVS as an essential interactor of B3AT. To better understand the interaction mechanism, a guided protein-protein docking approach based on SLIM motifs was performed for human B3AT and A5K5E5_PLAVS. The highlights of this important interaction between P. falciparum and its human host have the potential to pave the way to identify new therapeutic candidates.
文摘The conventional protein chromatography technique was adopted to purify the antifreeze proteins (AFPs) from the leaves of Ammopiptanthus mongolicus (Maxim.) Cheng f. Two bands on native PAGE gel showed thermal hysteresis activity, one was band B1, whose thermal hysteresis was 0.46 ℃ at 8 g/L, which showed two bands (67 kD, 21 kD) on SDS_PAGE gel; the other was B3, whose thermal hysteresis was 0.45 ℃ at 10 g/L, and it contained only a single protein (39.8 kD). Both B1 and B3 are not glycoproteins, because neither do they interact with Shiff_reagent, nor show ultraviolet characteristics of a typical glycoprotein.
基金financially supported by the National Natural Science Foundation of China(U2004104)the Natural Science Foundation of Henan Province(202300410080)+2 种基金the Key Project of Henan Education Committee(21A310005)the Internal Fund of Hebei University of Economics and Business(2020ZD10)the Postgraduate“Talent Program”of Henan University(SYL20060187 and SYL20060189)。
文摘In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability.
文摘The impact of apolipoprotein E(ApoE)isoforms on sporadic Alzheimer's disease has long been studied;however,the influences of apolipoprotein E gene(APOE)on healthy and pathological human brains are not fully understood.ApoE exists as three common isoforms(ApoE2,ApoE3,and ApoE4),which differ in two amino acid residues.Traditionally,ApoE binds cholesterol and phospholipids and ApoE isoforms display diffe rent affinities for their receptors,lipids transport and distribution in the brain and periphery.The role of ApoE in the human depends on ApoE isoforms,brain regions,aging,and neural injury.APOE E4 is the strongest genetic risk factor for sporadic Alzheimer's disease,considering its role in influencing amyloid-beta metabolism.The exact mechanisms by which APOE gene variants may increase or decrease Alzheimer's disease risk are not fully understood,but APOE was also known to affect directly and indirectly tau-mediated neurodegeneration,lipids metabolism,neurovascular unit,and microglial function.Consistent with the biological function of ApoE,ApoE4 isoform significantly alte red signaling pathways associated with cholesterol homeostasis,transport,and myelination.Also,the rare protective APOE variants confirm that ApoE plays an important role in Alzheimer's disease pathogenesis.The objectives of the present mini-review were to describe classical and new roles of various ApoE isoforms in Alzheimer's disease pathophysiology beyond the deposition of amyloid-beta and to establish a functional link between APOE,brain function,and memory,from a molecular to a clinical level.APOE genotype also exerted a heterogeneous effect on clinical Alzheimer's disease phenotype and its outcomes.Not only in learning and memory but also in neuro psychiatric symptoms that occur in a premorbid condition.Cla rifying the relationships between Alzheimer's disease-related pathology with neuropsychiatric symptoms,particularly suicidal ideation in Alzheimer's disease patients,may be useful for elucidating also the underlying pathophysiological process and its prognosis.Also,the effects of anti-amyloid-beta drugs,recently approved for the treatment of Alzheimer's disease,could be influenced by the APOE genotype.
基金supported by the National Key R&D Program of China,No.2021YFF0702203(to HYL)the National Natural Science Foundation of China,No.82101323(to TS)Preferred Foundation of Zhejiang Postdoctors,No.ZJ2021152(to TS).
文摘Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.
基金supported by the National Science Foundation of China (32171941,31571583)。
文摘Plant calmodulins(CaMs)and calmodulin-like proteins(CMLs)mediate Ca~(2+)signaling in response to abiotic stresses.Manipulation of this signaling in crops could increase stress tolerance.We review methods for detecting Ca~(2+)signals,regulatory roles of Ca Ms and CMLs,binding targets,and Ca~(2+)networks under abiotic stress in organelles.
基金supported by the National Natural Science Foundation of China(U20A2067,32272360)。
文摘A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs.
文摘Rat protein DE is an androgen-dependent cysteine-rich secretory protein (CRISP) synthesized by proximal epididymal regions. DE, also known as CRISP-1, is localized on the equatorial segment of acrosome-reacted spermatozoa and participates in gamete fusion through binding to egg complementary sites. Immunization of rats with DE inhibits fertility and sperm fusion ability, suggesting that DE represents a good epididymal contraceptive target. Recombinant DE fragments and synthetic peptides revealed that DE binds to the egg via a 12-amino acid region of an evolutionarily conserved motif, Signature 2 (S2). The ability of other CRISP to bind to the rat egg was correlated with their S2 amino acid sequences. Although testicular protein Tpx- 1 (CRISP-2) was capable of binding to rodent eggs, human epididymal AEG-related protein (ARP) and helothermine (from lizard saliva) were not. The S2 region presented only two substitutions in Tpx-1 and four in ARP and helothermine, compared with the DE S2, suggesting that this amino acid sequence was relevant for egg interaction. Studies with Tpx- 1 and anti-Tpx- 1 revealed the participation of this protein in gamete fusion through binding to complementary sites in the egg. In competition studies, DE reduced binding of Tpx- 1 dose-dependently, indicating that both CRISP share the egg complementary sites. That anti-DE and anti-Tpx-1 inhibit sperm-egg fusion while recognizing only the corresponding proteins, suggests functional cooperation between these homologous CRISP to ensure fertilization success. These results increase our understanding of the molecular mechanisms of gamete fusion and contribute to the development of new and safer fertility regulating methods. (Asian J Androl 2007 July; 9: 528-532)
基金supported by the National Natural Science Foundation of China,No.30973782the National Natural Science Foundation for the Youth,No.81001693+1 种基金the Natural Science Foundation of Beijing,No.7102014,7122018the Science and Technology Foundation for Chinese Medicine in Beijing,No.JJ2008-042
文摘The present study established a rat model of vascular dementia induced by chronic cerebral hypoperfusion through permanent ligation of bilateral common carotid arteries.At 60 days after modeling,escape latency and swimming path length during hidden-platform acquisition training in Morris water maze significantly increased in the model group.In addition,the number of accurate crossings over the original platform significantly decreased,hippocampal CA1 synaptophysin and growth-associated protein 43 expression significantly decreased,cAMP response element-binding protein expression remained unchanged,and phosphorylated cAMP response element-binding protein expression significantly decreased.Results suggested that abnormal expression of hippocampal synaptic structural protein and cAMP response element-binding protein phosphorylation played a role in cognitive impairment following chronic cerebral hypoperfusion.
文摘Abnormal intracellular accumulation or transport of lipids contributes greatly to the pathogenesis of human diseases. In the liver, excess accumulation of triacylglycerol (TG) leads to fatty liver disease encompassing steatosis, steatohepatitis and fibrosis. This places individuals at risk of developing cirrhosis, hepatocellular carcinoma or hepatic decompensation and also contributes to the emergence of insulin resistance and dyslipidemias affecting many other organs. Excessive accumulation of TG in adipose tissue contributes to insulin resistance as well as to the release of cytokines attracting leucocytes leading to a pro-inflammatory state. Pathological accumulation of cholesteryl ester (CE) in macrophages in the arterial wall is the progenitor of atherosclerotic plaques and heart disease. Overconsumption of dietary fat, cholesterol and carbohydrates explains why these diseases are on the increase yet offers few clues for how to prevent or treat individuals. Dietary regimes have proven futile and barfing surgery, no realistic alternatives are at hand as effective drugs are few and not without side effects. Overweight and obesity-related diseases are no longer restricted to the developed world and as such, constitute a global problem. Development of new drugs and treatment strategies are a priority yet requires as a first step, elucidation of the molecular pathophysiology underlying each associated disease state. The lipid droplet (LD), an up to now over- looked intracellular organelle, appears at the heart of each pathophysiology linking key regulatory and metabolic processes as well as constituting the site of storage of both TGs and CEs. As the molecular machinery and mechanisms of LDs of each cell type are being elucidated, regulatory proteins used to control various cellular processes are emerging. Of these and the subject of this review, small GTPases belonging to the Rab protein family appear as important molecular switches used in the regulation of the intracellular trafficking and storage of lipids.
基金financially supported by a grant from Tarbiat Modares University,Tehran,Iran
文摘The relationship between vernalization requirement and quantitative and qualitative changes in total leaf soluble proteins were determined in one spring (cv. Kohdasht) and two winter (cvs. Sardari and Norstar) cultivars of wheat (Triticum aestivum L.) exposed to 4℃. Plants were sampled on days 2, 14, 21 and 35 of exposure to 4℃. The final leaf number (FLN) was determined throughout the vernalization periods (0, 7, 14, 24, and 35 d) at 4℃. The final leaf number decreased until days 24 and 35 in Sardari and Norstar eultivars, respectively, indicating the vernalization saturation at these times. No clear changes were detected in the final leaf number of Kohdash cultivar, verifying no vernalization requirement for this spring wheat cultivar. Comparing with control, clear cold-induced 2-fold increases in proteins quantity occurred after 48 h following the 4℃-treatment in the leaves of the both winter wheat cultivars but, such response was not detected in the spring cultivar. However, the electrophoretic protein patterns showed between-cultivar and between-temperature treatment differences. With increasing exposure time to 4℃, the winter cultivars tended to produce more HMW polypeptides than the spring cultivar. Similar proteins were induced in both Sardari and Norstar winter wheat cultivars, however, the long vernalization requirement in Norstar resulted in high level and longer duration of expression of cold-induced proteins compared to Sardari with a short vernalization requirement. These observations indicate that vernalization response regulates the expression of low temperature (LT) tolerance proteins and determines the duration of expression of LT- induced proteins.
基金supported by the 2007 Chang-Jiang Scholars Program, National Natural Science Foundation of China (30973393 & 30400071)"211" Projects grant (Biotechnology & Bioengineering Medicine and Biomaterial & Tissue Engineering)
文摘Objective To identify ubiquitinated proteins from complex human multiple myeloma (MM) U266 cells,a malignant disorder of differentiated human B cells.Methods Employing a globally proteomic strategy combining of immunoprecipitation,LC-MS/MS and SCX-LC-MS analysis to identified ubiquitination sites,which were identified by detecting signature peptides containing a GG-tag (114.1 Da) and an LRGG-tag (383.2 Da).Results In total,52 ubiquitinated proteins containing 73 ubiquitination sites of which 14 and 59 sites contained LRGG-tag and GG-tag were identified,respectively.Conclusion Classification analysis by of the proteins identified in the study based on the PANTHER showed that they were associated with multiple functional groups.This suggested the involvement of many endogenous proteins in the ubiquitination in MM.
基金Project supported by the Gansu Province Industrial Support Plan (Grant No.2023CYZC-25)the Natural Science Foundation of Gansu Province (Grant No.23JRRA770)the National Natural Science Foundation of China (Grant No.62162040)。
文摘Essential proteins are inseparable in cell growth and survival. The study of essential proteins is important for understanding cellular functions and biological mechanisms. Therefore, various computable methods have been proposed to identify essential proteins. Unfortunately, most methods based on network topology only consider the interactions between a protein and its neighboring proteins, and not the interactions with its higher-order distance proteins. In this paper, we propose the DSEP algorithm in which we integrated network topology properties and subcellular localization information in protein–protein interaction(PPI) networks based on four-order distances, and then used random walks to identify the essential proteins. We also propose a method to calculate the finite-order distance of the network, which can greatly reduce the time complexity of our algorithm. We conducted a comprehensive comparison of the DSEP algorithm with 11 existing classical algorithms to identify essential proteins with multiple evaluation methods. The results show that DSEP is superior to these 11 methods.
基金Project (No. 30570093) supported by the National Natural ScienceFoundation of China
文摘Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called lipid-associated membrane proteins (LAMPs). LAMPs are highly antigenic and could undergo phase and size variation, and are recognized by the innate immune system through Toll-like receptors (TLR) 2 and 6. LAMPs can modulate the immune system, and could induce immune cells apoptosis or death. In addition, they may associate with malignant transformation of host cells and are also con-sidered to be cofactors in the progression of AIDS.
文摘Protein-based therapeutics (PPTs) are drugs used to treat a variety of different conditions in the human body by alleviating enzymatic deficiencies, augmenting other proteins and drugs, modulating signal pathways, and more. However, many PPTs struggle from a short half-life due to degradation caused by irreversible protein aggregation in the bloodstream. Currently, the most researched strategies for improving the efficiency and longevity of PPTs are post-translational modifications (PTMs). The goal of our research was to determine which type of PTM increases longevity the most for each of three commonly-used therapeutic proteins by comparing the docking scores (DS) and binding free energies (BFE) from protein aggregation and reception simulations. DS and BFE values were used to create a quantitative index that outputs a relative number from −1 to 1 to show reduced performance, no change, or increased performance. Results showed that methylation was the most beneficial for insulin (p < 0.1) and human growth hormone (p < 0.0001), and both phosphorylation and methylation were somewhat optimal for erythropoietin (p < 0.1 and p < 0.0001, respectively). Acetylation consistently provided the worst benefits with the most negative indices, while methylation had the most positive indices throughout. However, PTM efficacy varied between PPTs, supporting previous studies regarding how each PTM can confer different benefits based on the unique structures of recipient proteins.
基金supported by a grant from National Key Project of Science and Technology Ministry of China for 973-SARS (No. 2003CB514112)SARS funding first granted from Ministry of education of China ([2003]64)The National 10th Five-Year Plan Key Project of China (2004BA720A01)
文摘SARS coronavirus (SARS-CoV) is the etiologic agent of severe acute respiratory syndrome. The aim of this study was to construct Sars-CoV membrane (M), nucleocapsid (N) and spike 2 ($2) gene eukaryotic expression plasmids, and identify their expression in vitro. Gene fragments encoding N protein, M protein and $2 protein of SARS-CoV were amplified by PCR using cDNA obtained from lung samples of SARS patients as template, and subcloned into pcDNA3.1 vector to form eukaryotic expression plasmids. SARS-CoV protein eukaryotic expression plasmids were transfected respectively into CHO cells. Immunohistochemistry was employed to detect the expression of the structural proteins of SARS-CoV in transfected cells. SARS-CoV protein eukaryotic expression plasmids were successfully constructed by identification with digestion of restriction enzymes and sequencing. M, N and S2 proteins of SARS-CoV were detected in the cytoplasm of transfected CHO cells. It was concluded that these recombinant eukaryotic expression plasmids were constructed successfully, and SARS-CoV encoding proteins could activate transcription and expression of hfgl2 gene.
文摘AIM To determine the association of human antigen R(HuR) and inhibitors of apoptosis proteins(IAP1, IAP2) and prognosis in pancreatic cancer.METHODS Protein and mRNA expression levels of IAP1, IAP2 and HuR in pancreatic ductal adenocarcinoma(PDAC) were compared with normal pancreatic tissue. The correlations among IAP1/IAP2 and HuR as well as their respective correlations with clinicopathological parameters were analyzed. The Kaplan-Meier method and log-rank tests were used for survival analysis. Immunoprecipitation assay was performed to demonstrate HuR binding to IAP1, IAP2 mRNA. PANC1 cells were transfected with either anti-HuR siRNA or control siRNA for 72 h and quantitative reverse transcription polymerase chain reaction(RT-PCR), western blot analysis was carried out.RESULTS RT-PCR analysis revealed that HuR, IAP1, IAP2 mRNA expression were accordingly 3.3-fold, 5.5-fold and 8.4 higher in the PDAC when compared to normal pancreas(P < 0.05). Expression of IAP1 was positively strongly correlated with HuR expression(P < 0.05, r = 0.783). Western blot analysis confirmed RTPCR results. High IAP1 expression, tumor resection status, T stage, lymph-node metastases, tumor differentiation grade, perineural and lymphatic invasion were identified as significant factors for shorter survival in PDAC patients(P < 0.05).Immunohistological analysis showed that HuR was mainly expressed in the ductal cancer cell's nucleus and less so in cytoplasm. RNA immunoprecipitation analysis confirmed IAP1 and IAP2 post-transcriptional regulation by HuR protein. Following siHuR transfection, IAP1 mRNA and protein levels were decreased, however IAP2 expression levels were increased.CONCLUSION HuR mediated overexpression of IAP1 significantly correlates with poor outcomes and early progression of pancreatic cancer. Further studies are needed to assess the underlying mechanisms.
文摘AIM: To study the distribution pattern of transcription factors NF-kB and AP-1 and their relations with the expression of apoptosis associated-proteins Fas/FasL and ICH-1L/S in human hepatocellular carcinoma (HCC). METHODS: We performed in situ hybridization and immunohistochemical techniques for NF-kB, AP-1, Fas/FasL and ICH-1 in 40 cases of human HCC along with corresponding nontumoral tissues and 7 cases of normal liver tissues. RESULTS: Twenty-two (55%) and 25 (62.5%) of 40 cases for NF-κB and AP-1 were presented for nuclear or both nuclear and cytoplastic staining respectively, while less cases were presented for only cytoplastic staining for NF-κB (18%) and AP-1 (10%) in adjacent nontumoral tissues and negative staining in normal liver tissues. There was no statistically significant difference of NF-κB or AP-1 activation between well differentiated tumors and poorly differentiated tumors (P>0.05). NF-κkB activity is positively corresponded to AP-1 activation. The expression of ICH-1L/S was associated with the activation of NF-κB and AP-1 (P<0.05), but no significant relationship was found between Fas/FasL and NF-κB or AP-l(P>0.05). CONCLUSION: Activation of both NF-κB and AP-1 may be required for ICH-1L/S-induced apoptosis in HCC, but not for Fas/FasL-mediated apoptosis. NF-κB and AP-1 may play important roles in the pathogenesis of human HCC.