The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the ...The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.展开更多
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major public health problem worldwide. Pulmonary rehabilitation (PR) is an established intervention for the management of patients with COPD. Exercise...BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major public health problem worldwide. Pulmonary rehabilitation (PR) is an established intervention for the management of patients with COPD. Exercise training is an important part of PR, and its effectiveness in patients with COPD is well established. However, alternative methods of PR training such as Daoyin have not been appropriately studied. Hence, alternative forms of exercise training that require less exercise equipment and no specific training place should be evaluated. This paper describes the study protocol of a clinical trial that aims to determine if pulmonary Daoyin training will improve the exercise capacity and psychosocial function of patients with COPD in China. METHODS AND DESIGN: A multicenter, randomized, controlled trial will be conducted. A total of 464 patients meeting the inclusion criteria will be enrolled into this study with 232 patients in each of the trial group and the control group. Based on patient education, patients in the trial group will receive pulmonary Daoyin and continue with their usual therapy for three months. In the control group, patients will continue with their usual therapy. The primary outcome measures are exercise capacity assessed by the six-minute walking distance test and lung function. Secondary outcomes include dyspnea and quality of life. Measurements will be taken at baseline (month 0) and after the study period (month 3). DISCUSSION: It is hypothesized that pulmonary Daoyin will have beneficial effects in improving exercise capacity and psychosocial function of patients with stable COPD, and will provide an alternative form of exercise training that is accessible for the large number of people with COPD. TRIAL REGISTRATION: This trial has been registered in ClinicalTrials.gov. The identifier is NCT01482000.展开更多
The dynamic characteristics of eplicit control protocol (XCP) were investigated with single bottleneck on the microscopic time-scale. Analysis and simulation results show that the bandwidth utilization of an XCP bottl...The dynamic characteristics of eplicit control protocol (XCP) were investigated with single bottleneck on the microscopic time-scale. Analysis and simulation results show that the bandwidth utilization of an XCP bottleneck link converges to 1 at exponential rate, persistent congestion cannot occur at the bottleneck link, and throughput of an arbitrary subset of XCP flows at the bottleneck link converges to its fair share in exponential rate. The XCP has high bandwidth utilization and good fairness properties.展开更多
The Internet evolves to incorporate very-high-bandwidth optical links and more large-delay satellite links. TCP faces new challenges in this unique environment. Theory and experiments showed that TCP becomes inefficie...The Internet evolves to incorporate very-high-bandwidth optical links and more large-delay satellite links. TCP faces new challenges in this unique environment. Theory and experiments showed that TCP becomes inefficient and is prone to be unstable as the per-flow product of bandwidth and latency increases, regardless of the queuing scheme. Variable-structure congestion Control Protocol (VCP) is proposed to address these problems. However, VCP has problem in terms of convergence time, i.e., it takes a long time for a new VCP flow to achieve fair bandwidth allocation if the existing VCP flows have large con- gestion windows. This paper proposed an Extended Variable-structure congestion Control Protocol (EVCP), which adopted a convergence controller. The basic idea of convergence controller is that if a flow has larger window than its fair window, its congestion window should be decreased more aggressively than usual in Multiplicative Decrease (MD) phase. Simulations showed that EVCP has better performance in terms of convergence time while keeping the advantages of VCP.展开更多
Most of the internet users connect through wireless networks. Majorpart of internet traffic is carried by Transmission Control Protocol (TCP). It hassome design constraints while operated across wireless networks. TCP...Most of the internet users connect through wireless networks. Majorpart of internet traffic is carried by Transmission Control Protocol (TCP). It hassome design constraints while operated across wireless networks. TCP is the traditional predominant protocol designed for wired networks. To control congestionin the network, TCP used acknowledgment to delivery of packets by the end host.In wired network, packet loss signals congestion in the network. But rather inwireless networks, loss is mainly because of the wireless characteristics such asfading, signal strength etc. When a packet travels across wired and wireless networks, TCP congestion control theory faces problem during handshake betweenthem. This paper focuses on finding this misinterpretation of the losses using crosslayer approach. This paper focuses on increasing bandwidth usage by improvingTCP throughput in wireless environments using cross layer approach and hencenamed the proposed system as CRLTCP. TCP misinterprets wireless loss as congestion loss and unnecessarily reduces congestion window size. Using the signalstrength and frame error rate, the type of loss is identified and accordingly theresponse of TCP is modified. The results show that there is a significant improvement in the throughput of proposed TCP upon which bandwidth usage isincreased.展开更多
Based on the analysis of the covert channel's working mechanism of the internet control message protocol (ICMP) in internet protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6), the ICMP covert cha...Based on the analysis of the covert channel's working mechanism of the internet control message protocol (ICMP) in internet protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6), the ICMP covert channd's algorithms of the IPv4 and IPv6 are presented, which enable automatic channeling upon IPv4/v6 nodes with non-IPv4-compatible address, and the key transmission is achieved by using this channel in the embedded Internet terminal. The result shows that the covert channel's algorithm, which we implemented if, set correct, the messages of this covert channel might go through the gateway and enter the local area network.展开更多
BACKGROUND: Parkinson's disease (PD) is a complicated disease, commonly diagnosed among the elderly, which leads to degeneration of the central nervous system. It presently lacks an effective therapy for its compl...BACKGROUND: Parkinson's disease (PD) is a complicated disease, commonly diagnosed among the elderly, which leads to degeneration of the central nervous system. It presently lacks an effective therapy for its complex pathogenesis. Adverse effects from Western drug-based medical intervention prevent long-term adherence to these therapies in many patients. Traditional Chinese medicine (TCM) has long been used to improve the treatment of PD by alleviating the toxic and adverse effects of Western drug-based intervention. Therefore, the aim of this study is to evaluate the efficacy and safety of Xifeng Dingchan Pill (XFDCP), a compound traditional Chinese herbal medicine, taken in conjunction with Western medicine in the treatment of PD patients at different stages in the progression of the disease. METHODS AND DESIGN: This is a multicenter, randomized controlled trial. In total, 320 patients with early- (n = 160) and middle-stage PD (n = 160) will be enrolled and divided evenly into control and trial groups. Of the 160 patients with early-stage PD, the trial group (n = 80) will be given XFDCP, and the control group (n = 80) will be given Madopar. Of the 160 patients with middle-stage PD, the trial group (n = 80) will be given XFDCP combined with Madopar and Piribedil, and the control group (n = 80) will be given Madopar and Piribedil. The Unified Parkinson's Disease Rating Scale scores, TCM symptoms scores, quality of life, change of Madopar's dosage and the toxic and adverse effects of Madopar will be observed during a 3-month treatment period and through a further 6-month follow-up period. DISCUSSION: It is hypothesized that XFDCP, combined with Madopar and Piribedil, will have beneficial effects on patients with PD. The results of this study will provide evidence for developing a comprehensive therapy regimen, which can delay the progress of the disease and improve the quality of life for PD patients in different stages. TRIAL REGISTRATION: This trial has been registered in the Chinese Clinical Trial Registry with the identifer ChiCTR-TRC-12002150.展开更多
A new medium access control protocol for MANs named DQCA(Distributed QueueCyclic Access)is presented in this paper.When the users of DQCA MAN transfer long files,the network will reach a steady state which is fair aft...A new medium access control protocol for MANs named DQCA(Distributed QueueCyclic Access)is presented in this paper.When the users of DQCA MAN transfer long files,the network will reach a steady state which is fair after a transient period.The transient pe-riod is shorter than that of DQDB.DQCA MAN has the flexibility in bandwidth allocation:the users can achieve different throughputs if the parameters,Pmax(i),are set to be differ-ent.The implementation of priority mechanism is simpler than that of DQDB.展开更多
The Internet Control Message Protocol(ICMP)covert tunnel refers to a network attack that encapsulates malicious data in the data part of the ICMP protocol for transmission.Its concealment is stronger and it is not eas...The Internet Control Message Protocol(ICMP)covert tunnel refers to a network attack that encapsulates malicious data in the data part of the ICMP protocol for transmission.Its concealment is stronger and it is not easy to be discovered.Most detection methods are detecting the existence of channels instead of clarifying specific attack intentions.In this paper,we propose an ICMP covert tunnel attack intent detection framework ICMPTend,which includes five steps:data collection,feature dictionary construction,data preprocessing,model construction,and attack intent prediction.ICMPTend can detect a variety of attack intentions,such as shell attacks,sensitive directory access,communication protocol traffic theft,filling tunnel reserved words,and other common network attacks.We extract features from five types of attack intent found in ICMP channels.We build a multi-dimensional dictionary of malicious features,including shell attacks,sensitive directory access,communication protocol traffic theft,filling tunnel reserved words,and other common network attack keywords.For the high-dimensional and independent characteristics of ICMP traffic,we use a support vector machine(SVM)as a multi-class classifier.The experimental results show that the average accuracy of ICMPTend is 92%,training ICMPTend only takes 55 s,and the prediction time is only 2 s,which can effectively identify the attack intention of ICMP.展开更多
A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and da...A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.展开更多
BACKGROUND: Rheumatoid arthritis (RA), as a common systemic inflammatory autoimmune disease, affects approximately 1 in 100 individuals. Effective treatment for RA is not yet available because current research does...BACKGROUND: Rheumatoid arthritis (RA), as a common systemic inflammatory autoimmune disease, affects approximately 1 in 100 individuals. Effective treatment for RA is not yet available because current research does not have a clear understanding of the etiology and pathogenesis of RA. Xinfeng Capsule, a patent Chinese herbal medicine, has been used in the treatment of RA in recent years. Despite its reported clinical efficacy, there are no large-sample, multicenter, randomized trials that support the use of Xinfeng Capsule for RA. Therefore, we designed a randomized, double-blind, multicenter, placebo-controlled trial to assess the efficacy and safety of Xinfeng Capsule in the treatment of RA. METHODS AND DESIGN: This is a 12-week, randomized, placebo-controlled, double-blind, multicenter trial on the treatment of RA. The participants will be randomly assigned to the experimental group and the control group at a ratio of 1:1. Participants in the experimental group will receive Xinfeng Capsule and a pharmaceutical placebo (imitation leflunomide). The control group will receive leflunomide and an herbal placebo (imitation Xinfeng Capsule). The American College of Rheumatology (ACR) Criteria for RA will be used to measure the efficacy of the Xinfeng Capsule. The primary outcome measure will be the percentage of study participants who achieve an ACR 20% response rate (ACR20), which will be measured every 4 weeks after randomization. Secondary outcomes will include the ACR50 and ACR70 responses, the side effects of the medications, the Disease Activity Score 28, RA biomarkers, quality of life, and X-rays of the hands and wrists. The first four of the secondary outcomes will be measured every 4 weeks and the others will be measured at baseline and after 12 weeks of treatment. DISCUSSION: The result of this trial will help to evaluate whether Xinfeng Capsule is effective and safe in the treatment of RA. TRIAL REGISTRATION: This trial has been registered in ClinicalTrials.gov. The identifier is N CT01774877.展开更多
OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Trans...OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Transmission Prot ocol) based OAM, i.e., SOAM system was proposed. SOAM implements new characters of SCTP such as multi-stream, enforced SACK and heartbeat mechanism on its tran sport layer. These characters help SOAM decrease the message transmission delay and accelerate the link failure detection. Besides, a new component named SOAM agent was introduced to improve the operation efficiency of SOAM. The experim ental results prove the proposed SOAM system achieves better performance on sign aling transmission compared with conventional TCP based OAM system.展开更多
This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided in...This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON an...Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.展开更多
In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic ...In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.展开更多
Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promisin...Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.展开更多
An adaptive transmission control algorithm based on TCP (TCP-ATCA) is proposed to reduce the effects of long propagation delay and high link error rate of the satellite network on the performances. The flow control ...An adaptive transmission control algorithm based on TCP (TCP-ATCA) is proposed to reduce the effects of long propagation delay and high link error rate of the satellite network on the performances. The flow control and the error recovery are differentiated by combined dynamic random early detection-explicit congestion notification (DRED-ECN) algorithm, and, moreover, the pertaining congestion control methods are used in TCP-ATCA to improve the throughput. By introducing the entire recovery algorithm, the unnecessary congestion window decrease is reduced, and the throughput and fairness are improved. Simulation results show that, compared with TCP-Reno, TCP-ATCA provides a better throughput performance when the link capacity is higher ( ≥600 packet/s), and roughly the same when it is lower. At the same time, TCP-ATCA also increases fairness and reduces transmission delay.展开更多
With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.Howeve...With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.However,traditional TCPs are ill-suited to such situations and always result in the inefficiency(e.g.missing the flow deadline,inevitable throughput collapse)of data transfers.This further degrades the user-perceived quality of service(QoS)in data centers.To reduce the flow completion time of mice and deadline-sensitive flows along with promoting the throughput of elephant flows,an efficient and deadline-aware priority-driven congestion control(PCC)protocol,which grants mice and deadline-sensitive flows the highest priority,is proposed in this paper.Specifically,PCC computes the priority of different flows according to the size of transmitted data,the remaining data volume,and the flows’deadline.Then PCC adjusts the congestion window according to the flow priority and the degree of network congestion.Furthermore,switches in data centers control the input/output of packets based on the flow priority and the queue length.Different from existing TCPs,to speed up the data transfers of mice and deadline-sensitive flows,PCC provides an effective method to compute and encode the flow priority explicitly.According to the flow priority,switches can manage packets efficiently and ensure the data transfers of high priority flows through a weighted priority scheduling with minor modification.The experimental results prove that PCC can improve the data transfer performance of mice and deadline-sensitive flows while guaranting the throughput of elephant flows.展开更多
文摘The rising number of electronic control units (ECUs) in vehicles and the decreasing time to market have led to the need for advanced methods of calibration. A multi-ECU calibration system was developed based on the explicit calibration protocol (XCP) and J1939 communication protocol to satisfy the need of calibrating multiple ECUs simultaneously. The messages in the controller area network (CAN) are defined in the J1939 protocol. Each CAN node can get its own calibration messages and information from other ECUs, and block other messages by qualifying the CAN messages with priority, source or destination address. The data field of the calibration message is designed with the XCP, with CAN acting as the transport layer. The calibration sessions are setup with the event-triggered XCP driver in the master node and the responding XCP driver in the slave nodes. Mirroring calibration variables from ROM to RAM enables the user to calibrate ECUs online. The application example shows that the multi-ECU calibration system can calibrate multiple ECUs simultaneously, and the main program can also accomplish its calculation and send commands to the actuators in time. By the multi-ECU calibration system, the calibration effort and time can be reduced and the variables in ECU can get a better match with the variables of other ECUs.
基金supported by 2011 Special Fund for TCM-scientific Research in the Public Interest of Ministry of Finance, People’s Republic of ChinaState Administration of Traditional Chinese Medicine (No. 201107002)
文摘BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major public health problem worldwide. Pulmonary rehabilitation (PR) is an established intervention for the management of patients with COPD. Exercise training is an important part of PR, and its effectiveness in patients with COPD is well established. However, alternative methods of PR training such as Daoyin have not been appropriately studied. Hence, alternative forms of exercise training that require less exercise equipment and no specific training place should be evaluated. This paper describes the study protocol of a clinical trial that aims to determine if pulmonary Daoyin training will improve the exercise capacity and psychosocial function of patients with COPD in China. METHODS AND DESIGN: A multicenter, randomized, controlled trial will be conducted. A total of 464 patients meeting the inclusion criteria will be enrolled into this study with 232 patients in each of the trial group and the control group. Based on patient education, patients in the trial group will receive pulmonary Daoyin and continue with their usual therapy for three months. In the control group, patients will continue with their usual therapy. The primary outcome measures are exercise capacity assessed by the six-minute walking distance test and lung function. Secondary outcomes include dyspnea and quality of life. Measurements will be taken at baseline (month 0) and after the study period (month 3). DISCUSSION: It is hypothesized that pulmonary Daoyin will have beneficial effects in improving exercise capacity and psychosocial function of patients with stable COPD, and will provide an alternative form of exercise training that is accessible for the large number of people with COPD. TRIAL REGISTRATION: This trial has been registered in ClinicalTrials.gov. The identifier is NCT01482000.
基金The National Natural Science Foundation of China (No. 60503049)
文摘The dynamic characteristics of eplicit control protocol (XCP) were investigated with single bottleneck on the microscopic time-scale. Analysis and simulation results show that the bandwidth utilization of an XCP bottleneck link converges to 1 at exponential rate, persistent congestion cannot occur at the bottleneck link, and throughput of an arbitrary subset of XCP flows at the bottleneck link converges to its fair share in exponential rate. The XCP has high bandwidth utilization and good fairness properties.
文摘The Internet evolves to incorporate very-high-bandwidth optical links and more large-delay satellite links. TCP faces new challenges in this unique environment. Theory and experiments showed that TCP becomes inefficient and is prone to be unstable as the per-flow product of bandwidth and latency increases, regardless of the queuing scheme. Variable-structure congestion Control Protocol (VCP) is proposed to address these problems. However, VCP has problem in terms of convergence time, i.e., it takes a long time for a new VCP flow to achieve fair bandwidth allocation if the existing VCP flows have large con- gestion windows. This paper proposed an Extended Variable-structure congestion Control Protocol (EVCP), which adopted a convergence controller. The basic idea of convergence controller is that if a flow has larger window than its fair window, its congestion window should be decreased more aggressively than usual in Multiplicative Decrease (MD) phase. Simulations showed that EVCP has better performance in terms of convergence time while keeping the advantages of VCP.
文摘Most of the internet users connect through wireless networks. Majorpart of internet traffic is carried by Transmission Control Protocol (TCP). It hassome design constraints while operated across wireless networks. TCP is the traditional predominant protocol designed for wired networks. To control congestionin the network, TCP used acknowledgment to delivery of packets by the end host.In wired network, packet loss signals congestion in the network. But rather inwireless networks, loss is mainly because of the wireless characteristics such asfading, signal strength etc. When a packet travels across wired and wireless networks, TCP congestion control theory faces problem during handshake betweenthem. This paper focuses on finding this misinterpretation of the losses using crosslayer approach. This paper focuses on increasing bandwidth usage by improvingTCP throughput in wireless environments using cross layer approach and hencenamed the proposed system as CRLTCP. TCP misinterprets wireless loss as congestion loss and unnecessarily reduces congestion window size. Using the signalstrength and frame error rate, the type of loss is identified and accordingly theresponse of TCP is modified. The results show that there is a significant improvement in the throughput of proposed TCP upon which bandwidth usage isincreased.
基金Supported by the National Natural Science Foun-dation of China (90104005 ,66973034)
文摘Based on the analysis of the covert channel's working mechanism of the internet control message protocol (ICMP) in internet protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6), the ICMP covert channd's algorithms of the IPv4 and IPv6 are presented, which enable automatic channeling upon IPv4/v6 nodes with non-IPv4-compatible address, and the key transmission is achieved by using this channel in the embedded Internet terminal. The result shows that the covert channel's algorithm, which we implemented if, set correct, the messages of this covert channel might go through the gateway and enter the local area network.
基金Specific Research Funding for the Traditional Chinese Medicine Industry of State Administration of Traditional Chinese Medicine (No.200807052)
文摘BACKGROUND: Parkinson's disease (PD) is a complicated disease, commonly diagnosed among the elderly, which leads to degeneration of the central nervous system. It presently lacks an effective therapy for its complex pathogenesis. Adverse effects from Western drug-based medical intervention prevent long-term adherence to these therapies in many patients. Traditional Chinese medicine (TCM) has long been used to improve the treatment of PD by alleviating the toxic and adverse effects of Western drug-based intervention. Therefore, the aim of this study is to evaluate the efficacy and safety of Xifeng Dingchan Pill (XFDCP), a compound traditional Chinese herbal medicine, taken in conjunction with Western medicine in the treatment of PD patients at different stages in the progression of the disease. METHODS AND DESIGN: This is a multicenter, randomized controlled trial. In total, 320 patients with early- (n = 160) and middle-stage PD (n = 160) will be enrolled and divided evenly into control and trial groups. Of the 160 patients with early-stage PD, the trial group (n = 80) will be given XFDCP, and the control group (n = 80) will be given Madopar. Of the 160 patients with middle-stage PD, the trial group (n = 80) will be given XFDCP combined with Madopar and Piribedil, and the control group (n = 80) will be given Madopar and Piribedil. The Unified Parkinson's Disease Rating Scale scores, TCM symptoms scores, quality of life, change of Madopar's dosage and the toxic and adverse effects of Madopar will be observed during a 3-month treatment period and through a further 6-month follow-up period. DISCUSSION: It is hypothesized that XFDCP, combined with Madopar and Piribedil, will have beneficial effects on patients with PD. The results of this study will provide evidence for developing a comprehensive therapy regimen, which can delay the progress of the disease and improve the quality of life for PD patients in different stages. TRIAL REGISTRATION: This trial has been registered in the Chinese Clinical Trial Registry with the identifer ChiCTR-TRC-12002150.
基金Supported by the Institute of Electronic Science of China and the National Natural Science Foundation of China.
文摘A new medium access control protocol for MANs named DQCA(Distributed QueueCyclic Access)is presented in this paper.When the users of DQCA MAN transfer long files,the network will reach a steady state which is fair after a transient period.The transient pe-riod is shorter than that of DQDB.DQCA MAN has the flexibility in bandwidth allocation:the users can achieve different throughputs if the parameters,Pmax(i),are set to be differ-ent.The implementation of priority mechanism is simpler than that of DQDB.
基金This research was supported by National Natural Science Foundation of China(Grant Nos.61972048,62072051).
文摘The Internet Control Message Protocol(ICMP)covert tunnel refers to a network attack that encapsulates malicious data in the data part of the ICMP protocol for transmission.Its concealment is stronger and it is not easy to be discovered.Most detection methods are detecting the existence of channels instead of clarifying specific attack intentions.In this paper,we propose an ICMP covert tunnel attack intent detection framework ICMPTend,which includes five steps:data collection,feature dictionary construction,data preprocessing,model construction,and attack intent prediction.ICMPTend can detect a variety of attack intentions,such as shell attacks,sensitive directory access,communication protocol traffic theft,filling tunnel reserved words,and other common network attacks.We extract features from five types of attack intent found in ICMP channels.We build a multi-dimensional dictionary of malicious features,including shell attacks,sensitive directory access,communication protocol traffic theft,filling tunnel reserved words,and other common network attack keywords.For the high-dimensional and independent characteristics of ICMP traffic,we use a support vector machine(SVM)as a multi-class classifier.The experimental results show that the average accuracy of ICMPTend is 92%,training ICMPTend only takes 55 s,and the prediction time is only 2 s,which can effectively identify the attack intention of ICMP.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘A novel distributed cognitive radio multichannel medium access protocol without common control channel was proposed.The protocol divided a transmission interval into two parts for exchanging control information and data,respectively.In addition to evaluating system saturation throughput of the proposed protocol,a three-dimensional multi channel Markov chain model to describe the sate of the cognitive users (CUs) in dynamic spectrum access was presented.The proposed analysis was applied to the packet transmission schemes employed by the basic,RTS/CTS access mechanism adopted in the normal IEEE 802.11.Analyzing the advantage of the two methods,a hybrid access mechanism was proposed to improve the system throughput.The simulation results show that the experiment results are close to the value computed by the model (less than 5%),and the proposed protocol significantly improves the performance of the system throughput by borrowing the licensed spectrum.By analyzing the dependence of throughput on system parameters,hybrid mechanism dynamically selecting access mechanism can maintain high throughput.
基金supported by the Twelfth Five-Year Support Project of the Ministry of Science and Technology for clinical studies investigating Xin'an medicine in the treatment of complicated ascites diseases(No.2012BAI26B02)
文摘BACKGROUND: Rheumatoid arthritis (RA), as a common systemic inflammatory autoimmune disease, affects approximately 1 in 100 individuals. Effective treatment for RA is not yet available because current research does not have a clear understanding of the etiology and pathogenesis of RA. Xinfeng Capsule, a patent Chinese herbal medicine, has been used in the treatment of RA in recent years. Despite its reported clinical efficacy, there are no large-sample, multicenter, randomized trials that support the use of Xinfeng Capsule for RA. Therefore, we designed a randomized, double-blind, multicenter, placebo-controlled trial to assess the efficacy and safety of Xinfeng Capsule in the treatment of RA. METHODS AND DESIGN: This is a 12-week, randomized, placebo-controlled, double-blind, multicenter trial on the treatment of RA. The participants will be randomly assigned to the experimental group and the control group at a ratio of 1:1. Participants in the experimental group will receive Xinfeng Capsule and a pharmaceutical placebo (imitation leflunomide). The control group will receive leflunomide and an herbal placebo (imitation Xinfeng Capsule). The American College of Rheumatology (ACR) Criteria for RA will be used to measure the efficacy of the Xinfeng Capsule. The primary outcome measure will be the percentage of study participants who achieve an ACR 20% response rate (ACR20), which will be measured every 4 weeks after randomization. Secondary outcomes will include the ACR50 and ACR70 responses, the side effects of the medications, the Disease Activity Score 28, RA biomarkers, quality of life, and X-rays of the hands and wrists. The first four of the secondary outcomes will be measured every 4 weeks and the others will be measured at baseline and after 12 weeks of treatment. DISCUSSION: The result of this trial will help to evaluate whether Xinfeng Capsule is effective and safe in the treatment of RA. TRIAL REGISTRATION: This trial has been registered in ClinicalTrials.gov. The identifier is N CT01774877.
基金High-Tech Research and DevelopmentProgram of China (No. 2003AA123310)
文摘OAM (Operations, Administration and Maintenance) system is a very impo rtant component of 3G cellular network. In order to acquire overall managemen t, fast response and steady operation, an SCTP (Stream Control Transmission Prot ocol) based OAM, i.e., SOAM system was proposed. SOAM implements new characters of SCTP such as multi-stream, enforced SACK and heartbeat mechanism on its tran sport layer. These characters help SOAM decrease the message transmission delay and accelerate the link failure detection. Besides, a new component named SOAM agent was introduced to improve the operation efficiency of SOAM. The experim ental results prove the proposed SOAM system achieves better performance on sign aling transmission compared with conventional TCP based OAM system.
基金Supported by the Science Foundation of Shanghai Mu-nicipal Commission of Science and Technology under contract 045115012.
文摘This paper proposes a new multi-channel Medium Access Control (MAC) protocol named as Dual Reservation Code Division Multiple Access (CDMA) based MAC protocol with Power Control (DRCPC). The code channel is divided into common channel,broadcast channel and several data chan-nels. And dynamic power control mechanism is implemented to reduce near-far interference. Compared with IEEE 802.11 Distributed Coordination Function (DCF) protocol,the results show that the pro-posed mechanism improves the average throughput and limits the transmission delay efficiently.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
文摘Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.
基金supported by National Natural Science Foundation of China (No. 60674081,No. 60834002,No. 61074145)
文摘In networked control systems (NCS),the control performance depends on not only the control algorithm but also the communication protocol stack.The performance degradation introduced by the heterogeneous and dynamic communication environment has intensified the need for the reconfigurable protocol stack.In this paper,a novel architecture for the reconfigurable protocol stack is proposed,which is a unified specification of the protocol components and service interfaces supporting both static and dynamic reconfiguration for existing industrial communication standards.Within the architecture,a triple-level self-organization structure is designed to manage the dynamic reconfiguration procedure based on information exchanges inside and outside the protocol stack.Especially,the protocol stack can be self-adaptive to various environment and system requirements through the reconfiguration of working mode,routing and scheduling table.Finally,the study on the protocol of dynamic address management is conducted for the system of controller area network (CAN).The results show the efficiency of our self-organizing architecture for the implementation of a reconfigurable protocol stack.
基金supported by the National Key Research and Development Program of China,No.2017YFA0105403(to LMR)the Key Research and Development Program of Guangdong Province of China,No.2019B020236002(to LMR)+4 种基金The Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR0201006(to LMR)the National Natural Science Foundation of China,Nos.81772349(to BL),31470949(to BL)the Guangzhou Science and Technology Project of China,Nos.201704020221(to LMR),201707010115(to BL)the Natural Science Foundation of Guangdong Province of China,No.2017A030313594(to BL)the Medical Scientific Research Foundation of Guangdong Province of China,No.A2018547(to MP)
文摘Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.
基金National Natural Science Foundation of China (60502017, 60532030, 60625102)The Blue-Sky New Star Grant of Beijing University of Aeronautics and Astronautics (2004)
文摘An adaptive transmission control algorithm based on TCP (TCP-ATCA) is proposed to reduce the effects of long propagation delay and high link error rate of the satellite network on the performances. The flow control and the error recovery are differentiated by combined dynamic random early detection-explicit congestion notification (DRED-ECN) algorithm, and, moreover, the pertaining congestion control methods are used in TCP-ATCA to improve the throughput. By introducing the entire recovery algorithm, the unnecessary congestion window decrease is reduced, and the throughput and fairness are improved. Simulation results show that, compared with TCP-Reno, TCP-ATCA provides a better throughput performance when the link capacity is higher ( ≥600 packet/s), and roughly the same when it is lower. At the same time, TCP-ATCA also increases fairness and reduces transmission delay.
基金supported part by the National Natural Science Foundation of China(61601252,61801254)Public Technology Projects of Zhejiang Province(LG-G18F020007)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LY20F020008,LY18F020011,LY20F010004)K.C.Wong Magna Fund in Ningbo University。
文摘With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.However,traditional TCPs are ill-suited to such situations and always result in the inefficiency(e.g.missing the flow deadline,inevitable throughput collapse)of data transfers.This further degrades the user-perceived quality of service(QoS)in data centers.To reduce the flow completion time of mice and deadline-sensitive flows along with promoting the throughput of elephant flows,an efficient and deadline-aware priority-driven congestion control(PCC)protocol,which grants mice and deadline-sensitive flows the highest priority,is proposed in this paper.Specifically,PCC computes the priority of different flows according to the size of transmitted data,the remaining data volume,and the flows’deadline.Then PCC adjusts the congestion window according to the flow priority and the degree of network congestion.Furthermore,switches in data centers control the input/output of packets based on the flow priority and the queue length.Different from existing TCPs,to speed up the data transfers of mice and deadline-sensitive flows,PCC provides an effective method to compute and encode the flow priority explicitly.According to the flow priority,switches can manage packets efficiently and ensure the data transfers of high priority flows through a weighted priority scheduling with minor modification.The experimental results prove that PCC can improve the data transfer performance of mice and deadline-sensitive flows while guaranting the throughput of elephant flows.