期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Safety evaluation of replacement reinforcement quality in abutment contact zones of ultra-high arch dam in first impoundment period based on prototype monitoring 被引量:2
1
作者 Bo HU Zhong-ru WU +2 位作者 Guan-biao LIU Bin ZHAO Bo XU 《Water Science and Engineering》 EI CAS 2012年第2期210-218,共9页
Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact z... Reinforcement quality evaluation at the abutment is an important research direction. Prototype monitoring and theoretical derivation were integrated to study the replacement reinforcement quality in abutment contact zones of the Xiaowan ultra-high arch dam. The principles of monitoring layout and design are introduced in detail. Prototype monitoring shows that the increment of the interfacial compressive stress is much larger in the impoundment stage than in the regulating stage. The water pressure and time-effect are two main factors affeeting the interfacial stress. The time-effect is the key factor in the initial impoundment stage, and the water pressure is the key factor after impoundment. The contact properties are significantly improved by grouting. This study shows that there are three typical stages in the joint opening hydrographs, namely the compression stage, opening stage, and stable stage. There is a nonlinear relationship between the joint opening and temperature, which can be well described by the S-function. In conclusion, the reinforcement effect is satisfying, and the abutment is safe. 展开更多
关键词 ultra-high arch dam prototype monitoring compressive stress joint opening safety evaluation
下载PDF
6-DOF Motion Assessment of A Hydrodynamic Numerical Simulation of A Semisubmersible Platform Using Prototype Monitoring Data 被引量:1
2
作者 LI Song WU Wen-hua YAO Wei-an 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期575-587,共13页
Hydrodynamic numerical simulations are used to conduct structural analyses and inform the design of engineered marine structures.In this paper,a hydrodynamic numerical model of“Nanhai Tiaozhan”(NHTZ)FPS platform was... Hydrodynamic numerical simulations are used to conduct structural analyses and inform the design of engineered marine structures.In this paper,a hydrodynamic numerical model of“Nanhai Tiaozhan”(NHTZ)FPS platform was established according to its design specifications.The model was assessed with two sets of field monitoring data representing harsh and conventional sea states.The motion responses of the platform according to the measured data and the hydrodynamic simulation were compared by reviewing their statistical characteristics,distributions,and spectrum characteristics.The comparison showed that the hydrodynamic model could correctly simulate the frequency domain characteristics of the motion responses of the platform.However,the simulation underestimated the reciprocating motions of the floating body and the influence of slow drift on the motion of the platform.Meanwhile,analysis of the monitoring data revealed that the translational degrees of freedom(DOF)and rotational DOF of the platform were coupled,but these coupled motion states were not apparent in the hydrodynamic simulation. 展开更多
关键词 prototype monitoring hydrodynamic numerical simulation statistical characteristics semisubmersible platform reciprocating motions
下载PDF
An Overview of Structural Design,Analysis and Common Monitoring Technologies for Floating Platform and Flexible Cable and Riser 被引量:1
3
作者 WU Wen-hua ZHAO Yan +4 位作者 GOU Ying LYU Bai-cheng LU Qing-zhen LU Zhao-kuan YAN Jun 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期511-531,共21页
Offshore oil and gas development plays an important part in the global energy sector.Offshore platforms and flexible pipes are the key equipments in the whole offshore oil and gas development system.Because of the ran... Offshore oil and gas development plays an important part in the global energy sector.Offshore platforms and flexible pipes are the key equipments in the whole offshore oil and gas development system.Because of the randomness and uncertainty of wave and current loads in the ocean environment,the structural design and mechanical analysis of the marine equipment can be highly complicated.Therefore,this paper reviews the recent works of the theoretical model,numerical simulation,and experimental test in three research areas:hydrodynamic analysis of offshore platforms,structural mechanics analysis of flexible pipe and cable,and monitoring technology of offshore floating structures under marine loads.By analyzing their main research methods and key technical difficulties,this paper provides theoretical basis and technical support for the reliability engineering application of offshore platforms and flexible pipelines.Also,China is relatively backward in the design of marine floating platform,the design,analysis and testing of flexible pipeline and cable,as well as the marine equipment prototype monitoring technology research.Calling for breakthroughs at the earliest possible stage in the above fields,prime research should be focused on and strategic planning should be made to deal with“key areas and stranglehold problems”.It is of great significance for the development of China's deep-sea energy and resource development of independent technology and on time to achieve the“carbon peak”national strategic objectives. 展开更多
关键词 review marine floating platform flexible pipeline and cable prototype monitoring
下载PDF
Lateral Vibration Behavior Analysis and TLD Vibration Absorption Design of the Soft Yoke Single-Point Mooring System 被引量:4
4
作者 LYU Bai-cheng WU Wen-hua +1 位作者 YAO Wei-an DU Yu 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期284-290,共7页
Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in C... Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures. 展开更多
关键词 FPSO soft yoke mooring system vibration absorption TLD prototype monitoring system Bohai Bay
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部