With the development of Internet of Things technology,intelligent door lock devices are widely used in the field of house leasing.In the traditional housing leasing scenario,problems of door lock information disclosur...With the development of Internet of Things technology,intelligent door lock devices are widely used in the field of house leasing.In the traditional housing leasing scenario,problems of door lock information disclosure,tenant privacy disclosure and rental contract disputes frequently occur,and the security,fairness and auditability of the housing leasing transaction cannot be guaranteed.To solve the above problems,a blockchain-based proxy re-encryption scheme with conditional privacy protection and auditability is proposed.The scheme implements fine-grained access control of door lock data based on attribute encryption technology with policy hiding,and uses proxy re-encryption technology to achieve auditable supervision of door lock information transactions.Homomorphic encryption technology and zero-knowledge proof technology are introduced to ensure the confidentiality of housing rent information and the fairness of rent payment.To construct a decentralized housing lease transaction architecture,the scheme realizes the efficient collaboration between the door lock data ciphertext stored under the chain and the key information ciphertext on the chain based on the blockchain and InterPlanetary File System.Finally,the security proof and computing performance analysis of the proposed scheme are carried out.The results show that the scheme can resist the chosen plaintext attack and has low computational cost.展开更多
This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a...This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.展开更多
Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been ...Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been a research highlight.Although the attribute-based proxy re-encryption(ABPRE)schemes based on number theory can solve this problem,it is still difficult to resist quantum attacks and have limited expression capabilities.To address these issues,we present a novel linear secret sharing schemes(LSSS)matrix-based ABPRE scheme with the fine-grained policy on the lattice in the research.Additionally,to detect the activities of illegal proxies,homomorphic signature(HS)technology is introduced to realize the verifiability of re-encryption.Moreover,the non-interactivity,unidirectionality,proxy transparency,multi-use,and anti-quantum attack characteristics of our system are all advantageous.Besides,it can efficiently prevent the loss of processing power brought on by repetitive authorisation and can enable precise and safe data sharing in the cloud.Furthermore,under the standard model,the proposed learning with errors(LWE)-based scheme was proven to be IND-sCPA secure.展开更多
The mushroom growth of IoT has been accompanied by the generation of massive amounts of data.Subject to the limited storage and computing capabilities ofmost IoT devices,a growing number of institutions and organizati...The mushroom growth of IoT has been accompanied by the generation of massive amounts of data.Subject to the limited storage and computing capabilities ofmost IoT devices,a growing number of institutions and organizations outsource their data computing tasks to cloud servers to obtain efficient and accurate computation while avoiding the cost of local data computing.One of the most important challenges facing outsourcing computing is how to ensure the correctness of computation results.Linearly homomorphic proxy signature(LHPS)is a desirable solution to ensure the reliability of outsourcing computing in the case of authorized signing right.Blockchain has the characteristics of tamper-proof and traceability,and is a new technology to solve data security.However,as far as we know,constructions of LHPS have been few and far between.In addition,the existing LHPS scheme does not focus on homomorphic unforgeability and does not use blockchain technology.Herein,we improve the security model of the LHPS scheme,and the usual existential forgery and homomorphic existential forgery of two types of adversaries are considered.Under the new model,we present a blockchain-based LHPS scheme.The security analysis shows that under the adaptive chosen message attack,the unforgeability of the proposed scheme can be reduced to the CDH hard assumption,while achieving the usual and homomorphic existential unforgeability.Moreover,comparedwith the previous LHPS scheme,the performance analysis shows that our scheme has the same key size and comparable computational overhead,but has higher security.展开更多
China has established the basic rules of informed consent in the medical field through Articles 1219 and 1220 of the tort liability part of the Civil Code of China to address the legality of medical conduct.Since pati...China has established the basic rules of informed consent in the medical field through Articles 1219 and 1220 of the tort liability part of the Civil Code of China to address the legality of medical conduct.Since patients’capacity to consent is the prerequisite,when the patient is a fully competent person,it is sufficient to give consent based on valid notification by the doctor.However,for those who are unable to give valid consent,especially adult patients with impaired capacity,resolving the legality of the doctor’s medical conduct remains an issue when it infringes on the patient’s body and health.To solve this issue,someone must give consent in place of the patient when the adult is unable to give valid consent.However,the personal and exclusive nature of the right to medical consent,which is informed consent,makes it impossible to simply delegate it to a guardian or other person to exercise it on behalf of the patient.In this paper,we borrow the concept of“medical proxy”proposed by Japanese scholar Teruaki Tayama,and for the first time,we discuss the construction of medical proxy from the perspective of adult guardianship by connecting the two systems from the standpoint of interpretive theory.展开更多
基金supported by National Key Research and Development Project(No.2020YFB1005500)Beijing Natural Science Foundation Project(No.M21034)。
文摘With the development of Internet of Things technology,intelligent door lock devices are widely used in the field of house leasing.In the traditional housing leasing scenario,problems of door lock information disclosure,tenant privacy disclosure and rental contract disputes frequently occur,and the security,fairness and auditability of the housing leasing transaction cannot be guaranteed.To solve the above problems,a blockchain-based proxy re-encryption scheme with conditional privacy protection and auditability is proposed.The scheme implements fine-grained access control of door lock data based on attribute encryption technology with policy hiding,and uses proxy re-encryption technology to achieve auditable supervision of door lock information transactions.Homomorphic encryption technology and zero-knowledge proof technology are introduced to ensure the confidentiality of housing rent information and the fairness of rent payment.To construct a decentralized housing lease transaction architecture,the scheme realizes the efficient collaboration between the door lock data ciphertext stored under the chain and the key information ciphertext on the chain based on the blockchain and InterPlanetary File System.Finally,the security proof and computing performance analysis of the proposed scheme are carried out.The results show that the scheme can resist the chosen plaintext attack and has low computational cost.
基金Project supported by the General Project of Natural Science Foundation of Hunan Province(Grant Nos.2024JJ5273 and 2023JJ50328)the Scientific Research Project of Education Department of Hunan Province(Grant Nos.22A0049 and 22B0699)。
文摘This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.
基金The project is provided funding by the Natural Science Foundation of China(Nos.62272124,2022YFB2701400)the Science and Technology Program of Guizhou Province(No.[2020]5017)+3 种基金the Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education,GZUAMT2021KF[01]the Postgraduate Innovation Program in Guizhou Province(No.YJSKYJJ[2021]028).
文摘Cloud-based services have powerful storage functions and can provide accurate computation.However,the question of how to guarantee cloud-based services access control and achieve data sharing security has always been a research highlight.Although the attribute-based proxy re-encryption(ABPRE)schemes based on number theory can solve this problem,it is still difficult to resist quantum attacks and have limited expression capabilities.To address these issues,we present a novel linear secret sharing schemes(LSSS)matrix-based ABPRE scheme with the fine-grained policy on the lattice in the research.Additionally,to detect the activities of illegal proxies,homomorphic signature(HS)technology is introduced to realize the verifiability of re-encryption.Moreover,the non-interactivity,unidirectionality,proxy transparency,multi-use,and anti-quantum attack characteristics of our system are all advantageous.Besides,it can efficiently prevent the loss of processing power brought on by repetitive authorisation and can enable precise and safe data sharing in the cloud.Furthermore,under the standard model,the proposed learning with errors(LWE)-based scheme was proven to be IND-sCPA secure.
基金funded by the Special Innovation Project forGeneral Colleges and Universities in Guangdong Province (Grant No.2020KTSCX126).
文摘The mushroom growth of IoT has been accompanied by the generation of massive amounts of data.Subject to the limited storage and computing capabilities ofmost IoT devices,a growing number of institutions and organizations outsource their data computing tasks to cloud servers to obtain efficient and accurate computation while avoiding the cost of local data computing.One of the most important challenges facing outsourcing computing is how to ensure the correctness of computation results.Linearly homomorphic proxy signature(LHPS)is a desirable solution to ensure the reliability of outsourcing computing in the case of authorized signing right.Blockchain has the characteristics of tamper-proof and traceability,and is a new technology to solve data security.However,as far as we know,constructions of LHPS have been few and far between.In addition,the existing LHPS scheme does not focus on homomorphic unforgeability and does not use blockchain technology.Herein,we improve the security model of the LHPS scheme,and the usual existential forgery and homomorphic existential forgery of two types of adversaries are considered.Under the new model,we present a blockchain-based LHPS scheme.The security analysis shows that under the adaptive chosen message attack,the unforgeability of the proposed scheme can be reduced to the CDH hard assumption,while achieving the usual and homomorphic existential unforgeability.Moreover,comparedwith the previous LHPS scheme,the performance analysis shows that our scheme has the same key size and comparable computational overhead,but has higher security.
基金a stage achievement of the Research on the Deregulation of Enterprise Annuity Funds in Liaoning Provincea 2020 Liaoning Provincial Social Science Fund project(Project Approval No.I20AFX004)。
文摘China has established the basic rules of informed consent in the medical field through Articles 1219 and 1220 of the tort liability part of the Civil Code of China to address the legality of medical conduct.Since patients’capacity to consent is the prerequisite,when the patient is a fully competent person,it is sufficient to give consent based on valid notification by the doctor.However,for those who are unable to give valid consent,especially adult patients with impaired capacity,resolving the legality of the doctor’s medical conduct remains an issue when it infringes on the patient’s body and health.To solve this issue,someone must give consent in place of the patient when the adult is unable to give valid consent.However,the personal and exclusive nature of the right to medical consent,which is informed consent,makes it impossible to simply delegate it to a guardian or other person to exercise it on behalf of the patient.In this paper,we borrow the concept of“medical proxy”proposed by Japanese scholar Teruaki Tayama,and for the first time,we discuss the construction of medical proxy from the perspective of adult guardianship by connecting the two systems from the standpoint of interpretive theory.