期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Moderate heat treatment of CoFe Prussian blue analogues for enhanced oxygen evolution reaction performance
1
作者 Fangyuan Diao Mikkel Rykær Kraglund +4 位作者 Huili Cao Xiaomei Yan Pei Liu Christian Engelbrekt Xinxin Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期476-486,I0013,共12页
Prussian blue analogues(PBAs) with inherent ordered structures and abundant metal ion sites are widely explored as precursors for various electrochemical applications,including oxygen evolution reaction(OER).Using a r... Prussian blue analogues(PBAs) with inherent ordered structures and abundant metal ion sites are widely explored as precursors for various electrochemical applications,including oxygen evolution reaction(OER).Using a range of characterization techniques including Fourier-transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and energy dispersive spectroscopy(EDS),this work discloses the process of replacement of K^(+)by NH4^(+)in the interstitial spaces of the CoFe PBA by a hot aqueous urea solution,which influences the transformation of PBAs under further heat treatment and the OER performance of the deriva tives.After heat treatment at 400℃ under Ar flow,high-resolution transmission electron microscopy(HRTEM) images reveal that CoFe alloy nanoparticles grew on the crystalline cubes of CoFe PBA with K^(+),while CoFe PBA cubes with NH4^(+)become amorphous.Besides,the derivative of CoFe PBA with NH4^(+)(Ar-U-CoFe PBA) performs better than the derivative of CoFe PBA with K^(+)(Ar-CoFe PBA) in OER,registering a lower overpotential of 305 mV at 10 mA cm^(-2),a smaller Tafel slope of 36.1 mV dec^(-1),and better stability over a testing course of 20 h in 1.0 M KOH.A single-cell alkaline electrolyzer,using Ar-U-CoFe PBA and Pt/C for the anodic and cathodic catalyst,respectively,requires an initial cell voltage of 1.66 V to achieve 100 mA cm^(-2)at 80℃,with negligible degradation after100 h. 展开更多
关键词 prussian blue analogues PBA derivatives Oxygen evolution reaction ELECTROLYZER
下载PDF
Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries 被引量:7
2
作者 Chiwei Xu Zhengwei Yang +6 位作者 Xikun Zhang Maoting Xia Huihui Yan Jing Li Haoxiang Yu Liyuan Zhang Jie Shu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期92-127,共36页
In the applications of large-scale energy storage,aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature.However,carrier ions always exhibit huge hyd... In the applications of large-scale energy storage,aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature.However,carrier ions always exhibit huge hydrated radius in aqueous electrolyte,which brings difficulty to find suitable host materials that can achieve highly reversible insertion and extraction of cations.Owing to open threedimensional rigid framework and facile synthesis,Prussian blue analogues(PBAs)receive the most extensive attention among various host candidates in aqueous system.Herein,a comprehensive review on recent progresses of PBAs in aqueous batteries is presented.Based on the application in different aqueous systems,the relationship between electrochemical behaviors(redox potential,capacity,cycling stability and rate performance)and structural characteristics(preparation method,structure type,particle size,morphology,crystallinity,defect,metal atom in highspin state and chemical composition)is analyzed and summarized thoroughly.It can be concluded that the required type of PBAs is different for various carrier ions.In particular,the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce the application of PBAs in aqueous systems comprehensively.This report can help the readers to understand the relationship between physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous batteries and desalination batteries. 展开更多
关键词 prussian blue analogues ELECTROCHEMISTRY CATHODE Aqueous batteries Desalination batteries
下载PDF
Unveiling anomalous lattice shrinkage induced by Pi-backbonding in Prussian blue analogues
3
作者 Ju-Hyeon Lee Jin-Gyu Bae +1 位作者 Hyeon Jeong Lee Ji Hoon Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期121-128,I0004,共9页
Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs wit... Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs with different crystal structures, morphologies, and TM combinations can exhibit excellent electrochemical properties because of their unique and robust host frameworks with well-defined<100> ionic diffusion channels. Nonetheless, there is still a lack of understanding regarding the performance dependence of TM-PBAs on structural changes during charging/discharging processes. In this study, in situ X-ray diffraction and X-ray absorption fine structure analyses elucidate the TMdependent structural changes in a series of TM-PBAs during the charging and discharging processes.During the discharging process, the lattice volume of Fe-PBA increased while those of Ni-and Cu-PBAs decreased. This discrepancy is attributed to the extent of size reduction of the cyanometallate complex([Fe(CN)_(6)]) via pi-backbonding from Fe to C due to redox flips of the low-spin Fe^(3+/2+) ion. This study presents a comprehensive understanding of how TM selection affects capacity acquisition and phase transition in TM-PBAs, a promising class of cathode materials. 展开更多
关键词 prussian blue analogues X-ray diffraction X-ray absorption fine structure Pi-backdonation CYANIDES
下载PDF
FeNi Prussian blue analogues on highly graphitized carbon nanosheets as efficient glucose sensors
4
作者 Jin-Hang Xue Qiu-Hong Sun +4 位作者 Cheng Han Yuan-Dong Yang Shao-Jie Xu Qi-Peng Li Jin-Jie Qian 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2730-2738,共9页
Meeting the continuous glucose monitoring requirements of individuals necessitates the research and development of sensors with high sensitivity and stability.In this study,a straightforward strategy was proposed for ... Meeting the continuous glucose monitoring requirements of individuals necessitates the research and development of sensors with high sensitivity and stability.In this study,a straightforward strategy was proposed for synthesizing ultra-thin oxygen-rich graphitized carbon nanosheets(denoted as GCS-O).These nanosheets are obtained by calcining a topologically two-dimensional indium-based coordination polymer.Subsequently,the growth of FeNi Prussian blue analogue(PBA)on GCS-O effectively introduces active sites and increases the nitrogen content within the carbonaceous matrix.The resulting FeNi-PBA/GCS-O composite exhibits excellent glucose sensing performance with a broad linear range of 1 to 1300μmol·L^(-1).Meanwhile,it also achieves a high sensitivity of 2496μA·mmol^(-1)·L·cm^(-2),a limit of detection of 100nmol·L^(-1)(S/N=3),and commendable long-term durability.The relatively simple synthesis process,exceptional sensitivity,and satisfactory electrochemical sensing performance of FeNi-PBA/GCS-O open up new directions for biosensor applications. 展开更多
关键词 Coordination polymer Carbon nanosheet prussian blue analogue Surface reconstruction Glucose oxidation
原文传递
Core-shell Prussian blue analogues derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction 被引量:2
5
作者 Qing Zhang Hongyan Wang +3 位作者 Wenjie Han Lin Yang Yan Zhang Zhengyu Bai 《Nano Research》 SCIE EI CSCD 2023年第3期3695-3702,共8页
Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction(OER)is still a great challenge for water-splitting technologies.Herein,an innovative metal-organic frameworks(MOFs)hybrid-assiste... Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction(OER)is still a great challenge for water-splitting technologies.Herein,an innovative metal-organic frameworks(MOFs)hybrid-assisted strategy is reported to synthesize core-shell Co/Mn-ZIF@Fe-Co-Mn Prussian blue analogues(PBAs)toward highly efficient OER electrocatalysts in alkaline electrolyte.Physical characterization indicates that the amorphous hydroxide transformed from Co/Mn-ZIF@Fe-Co-Mn PBA(ZIF:zeolitic imidazolate frameworks)during the electrochemical process acted as the electroactive species.Benefiting from these structural and compositional features,the developed composite delivers a remarkably low overpotential of 270 mV with a current density of 10 mA·cm^(−2)in 1.0 M KOH solution.Moreover,water splitting is catalyzed to reach a current density of 10 mA·cm^(−2)at 1.62 V. 展开更多
关键词 core-shell structure metal-organic framework prussian blue analogues amorphous hydroxide oxygen evolution reaction
原文传递
Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage 被引量:1
6
作者 Jiangyuan Xing Yongsheng Zhang +1 位作者 Yang Jin Qianzheng Jin 《Nano Research》 SCIE EI CSCD 2023年第2期2486-2494,共9页
Mn-based Prussian blue analogues(Mn-PBAs),featuring a three-dimensional(3D)metal-organic framework and multiple redox couples,have gained wide interests in Zn-ion batteries(ZIBs).However,owing to the Jahn-Teller disto... Mn-based Prussian blue analogues(Mn-PBAs),featuring a three-dimensional(3D)metal-organic framework and multiple redox couples,have gained wide interests in Zn-ion batteries(ZIBs).However,owing to the Jahn-Teller distortion and disproportionation reaction of Mn^(3+),these materials suffer from poor electrochemical performances and inferior structural stability.Herein,we prepare a typical high-entropy Prussian blue analogue(HE-PBA)with increased configuration entropy through integrating five transition metal elements of Mn,Co,Ni,Fe and Cu into the nitrogen-coordinated-M-lattice sites.Consequently,the HE-PBA presents enhanced uptake of Zn^(2+)with 80 mAh·g^(−1)compared to those medium-entropy PBAs,low-entropy PBAs and conventional PBAs,which can be assigned to“cocktail”effect of multiple transition metal active redox couples.Furthermore,a phase transition process from monoclinic phase to rhombohedral phase occurs in HE-PBA cathode,resulting in a stable structure of MN6(M=Mn,Co,Fe,Ni,Cu)and ZnN4 co-linked to FeC6 through the cyanide ligands.Additionally,the advantages of entropy-driven stability are also confirmed by the calculated reduction energy and the density of states between HE-PBA and KMn[Fe(CN)6](KMnHCF).This work not only presents a high-performance HE-PBA cathode in ZIBs,but also introduces a novel concept of high entropy benefiting for designing advanced materials. 展开更多
关键词 high-entropy materials prussian blue analogues phase transformation secondary batteries zinc-ion batteries
原文传递
Boosting the sodium storage performance of Prussian blue analogues via effective etching
7
作者 Yanan Zhao Jian Peng +10 位作者 Kean Chen Laibing Luo Hui Chen Hang Zhang Shulei Chou Xiangmin Feng Weihua Chen Ruoyu Cao Xinping Ai Yongjin Fang Yuliang Cao 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第11期3154-3160,共7页
Prussian blue analogues(PBAs)have gained significant popularity as cathode materials for sodium-ion batteries(SIBs)due to their remarkable features such as high capacity and convenient synthesis.However,PBAs usually s... Prussian blue analogues(PBAs)have gained significant popularity as cathode materials for sodium-ion batteries(SIBs)due to their remarkable features such as high capacity and convenient synthesis.However,PBAs usually suffer from kinetic problems during the electrochemical reactions due to sluggish Na~+diffusion in the large crystals,resulting in low-capacity utilization and inferior rate capability.In this study,we present a facile etching method aiming at activating the sodium storage sites and accelerating the Na~+transport of Na_2NiFe(CN)_6(denoted as NaNiHCF)by precisely controlling its morphologies.A progressive corner passivation phenomenon occurred in NaNiHCF during the etching process,which led to a substantial augmentation of the specific surface area as the morphology transitioned from a standard cube to a dice shape.Notably,by controlling the etching time,the obtained NaNiHCF-3 electrode exhibited boosted electrochemical performance with high reversible capacity of 83.5mAh g~(-1)(98.2%of its theoretical capacity),superior rate capability(71.2 mAh g~(-1)at 10 C),and stable cycling life-span at different temperatures.Both experimental and computational methods reveal the remarkably reversible structural evolution process and improved Na~+diffusion coefficient.We believe that this work can serve as an indispensable reference to tailor the structure of PBAs to obtain improved electrochemical performance. 展开更多
关键词 prussian blue analogues Na_2NiFe(CN)_6 cathode materials ETCHING sodium-ion batteries
原文传递
Prussian blue analogues-derived nitrogen-doped carboncoated FeO/CoO hollow nanocages as a high-performance anode material for Li storage
8
作者 Chen Liu Shuang Yuan +4 位作者 Yang Yang Xiao-Xi Zhao Xiao Duan Bin Cao Qiang Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第12期4070-4080,共11页
The design of electrode materials with specific structures is considered a promising approach for improving the performance of lithium-ion batteries(LIBs).In this paper,FeO/CoO hollow nanocages coated with a N-doped c... The design of electrode materials with specific structures is considered a promising approach for improving the performance of lithium-ion batteries(LIBs).In this paper,FeO/CoO hollow nanocages coated with a N-doped carbon layer(FCO@NC)was prepared using Fe-Co-based Prussian blue analogs(PBA)as a precursor.During the synthesis,dopamine was the carbon and nitrogen source.The reducing atmosphere was assured via NH_3/Ar,which regulated the vacancies in the structure of FCO@NC as well as increased its conductivity.When used as anode materials for LIBs,the FCO@NC nanocages deliver a high reversible capacity of 774.89 mAh·g^(-1)at 0.3 A·g^(-1)after200 cycles with a capacity retention rate of 80.4%and426.76 mAh·g^(-1)after 500 cycles at a high current density of 1 A·g^(-1).It is demonstrated that the hollow nanocage structure can effectively enhance the cycle stability,and the heat treatment in NH_(3)/Ar atmosphere contributes to the oxygen vacancy content of the electrode materials,further facilitating its conductivity and electrochemical performance. 展开更多
关键词 prussian blue analogue(PBA) Oxygen vacancy Hollow nanocage Nitrogen doping Lithium ion batteries(LIBs)
原文传递
Energy storage materials derived from Prussian blue analogues 被引量:7
9
作者 Feng Ma Qing Li +2 位作者 Tanyuan Wang Hanguang Zhang Gang Wu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第5期358-368,共11页
Prussian blue analogues(PBAs) with open frameworks have drawn much attention in energy storage fields due to their tridimensional ionic diffusion path, easy preparation, and low cost. This review summarizes the recent... Prussian blue analogues(PBAs) with open frameworks have drawn much attention in energy storage fields due to their tridimensional ionic diffusion path, easy preparation, and low cost. This review summarizes the recent progress of using PBAs and their derivatives as energy storage materials in alkali ions,multi-valent ions, and metal-air batteries. The key factors to improve the electrochemical performance of PBAs as cathode materials in rechargeable batteries were firstly discussed. Several approaches for performance enhancement such as controlling the amounts of vacancies and coordinated water, optimizing morphologies, and depositing carbon coating are described in details. Then, we highlighted the significance of their diverse architectures and morphologies in anode materials for lithium/sodium ion batteries. Finally, the applications of Prussian blue derivatives as catalysts in metal-air batteries are also reviewed, providing insights into the origin of favorable morphologies and structures of catalyst for the optimal performance. 展开更多
关键词 prussian blue analogues Energy storage Rechargeable battery Open frameworks Cathode materials Anode materials CATALYSTS
原文传递
Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion Batteries 被引量:3
10
作者 Shen Qiu Yunkai Xu +1 位作者 Xianyong Wu Xiulei Ji 《Electrochemical Energy Reviews》 SCIE EI 2022年第2期242-262,共21页
Aqueous batteries have engendered increasing attention as promising solutions for stationary energy storage due to their potentially low cost and innate safety.In various aqueous battery systems,Prussian blue analogue... Aqueous batteries have engendered increasing attention as promising solutions for stationary energy storage due to their potentially low cost and innate safety.In various aqueous battery systems,Prussian blue analogues(PBAs)represent a class of promising electrode materials with fascinating electrochemical performance,owing to their large open frameworks,abundant ion insertion sites,and facile preparation.To date,PBAs have shown substantial progress towards storage of alkali metal ions(Li^(+),Na^(+),and K^(+)),H^(+),and NH4^(+) in aqueous electrolytes,which,however,has yet not been specifically summarized.This review selects some representative research to introduce the progress of PBAs in these battery systems and aims to discuss the crucial role of ionic charge carrier in affecting the overall electrode performance.Besides,some critical knowledge gaps and challenges of PBA materials have been pointed out for future development. 展开更多
关键词 prussian blue analogues Aqueous batteries Monovalent ion storage
原文传递
Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
11
作者 莫家俊 夏溥越 +6 位作者 沈纪宇 陈海文 陆泽一 徐诗语 张庆航 夏艳芳 刘敏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期639-645,共7页
This work examines the origin of the abnormal magnetism exhibited by Cu Mn Fe-PBAs modified with multi-walled carbon nanotubes(MWCNTs).The system of Cu Mn Fe-PBAs@MWCNTs coexists with both large and small clusters.Cu ... This work examines the origin of the abnormal magnetism exhibited by Cu Mn Fe-PBAs modified with multi-walled carbon nanotubes(MWCNTs).The system of Cu Mn Fe-PBAs@MWCNTs coexists with both large and small clusters.Cu Mn Fe-PBAs clusters have an average particle size of 28 nm,and some of the smaller particles are adsorbed on the surface of MWCNTs.Surprisingly,the magnitude of magnetization increases linearly with decreasing temperature.When above the Curie temperature,the magnitude of magnetization is significantly greater than that of PBAs without being modified.This phenomenon can be attributed to magnetostatic interactions between ultra-fine magnetic nanoparticles adsorbed on the surface of MWCNTs.Using the Monte Carlo method,we simulated the magnetostatic interaction of cylindrical adsorbed particles,and the simulation results are almost identical to those observed experimentally.The results indicate that 0.089Cu Mn Fe-PBAs clusters per 1 nm^(2)can be adsorbed onto the surface area of MWCNTs.We demonstrate that MWCNTs adsorbing magnetic particles exhibit magnetic behavior,and suggest a method for producing ultrafine materials.It also introduces a new method of calculating the adsorption efficiency of carbon nanotubes,offering theoretical guidance for future research on nanomaterials with enhanced adsorption efficiency. 展开更多
关键词 multi-walled carbon nanotubes prussian blue analogue Monte Carlo simulation magnetostatic interaction
下载PDF
Ultralow-Energy-Barrier H_(2)O_(2)Dissociation on Coordinatively Unsaturated Metal Centers in Binary Ce-Fe Prussian Blue Analogue for Efficient and Stable Photo-Fenton Catalysis
12
作者 Wenting Zheng Hui Guo +4 位作者 Changqing Zhu Cailiang Yue Wenlei Zhu Fuqiang Liu Zhaoxu Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期427-435,共9页
The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functiona... The low intrinsic activity of Fenton catalytic site and high demand for light-energy input inhibit the organic-pollution control efficiency of photo-Fenton process.Here,through structural design with density functional theory(DFT)calculations,Ce is predicted to enable the construction of coordinatively unsaturated metal centers(CUCs)in Prussian blue analogue(PBA),which can strongly adsorb H_(2)O_(2)and donate sufficient electrons for directly splitting the O-O bond to produceOH.Using a substitution-co-assembly strategy,binary Ce-Fe PBA is then prepared,which rapidly degrades sulfamethoxazole with the pseudo-first-order kinetic rate constant exceeding reported values by 1-2 orders of magnitude.Meanwhile,the photogenerated electrons reduce Fe(Ⅲ)and Ce(Ⅳ)to promote the metal valence cycle in CUCs and make sulfamethoxazole degradation efficiency only lose 6.04%in 5 runs.Overall,by introducing rare earth metals into transition metal-organic frameworks,this work guides the whole process for highly active CUCs from design and construction to mechanism exploration with DFT calculations,enabling ultrafast and stable photo-Fenton catalysis. 展开更多
关键词 Ce substitution coordinatively unsaturated metal centers PHOTO-FENTON prussian blue analogue
下载PDF
Toward the Design of High-performance Supercapacitors by Prussian Blue, its Analogues and their Derivatives
13
作者 Yueqiang Lin Longhai Zhang +2 位作者 Ya Xiong Tong Wei Zhuangjun Fan 《Energy & Environmental Materials》 2020年第3期323-345,共23页
Supercapacitors(SCs)with high power output have attracted increasing attention as efficient and environmentally friendly energy storage devices.Prussian blue and its analogues(PB/PBAs)are simple coordination polymers ... Supercapacitors(SCs)with high power output have attracted increasing attention as efficient and environmentally friendly energy storage devices.Prussian blue and its analogues(PB/PBAs)are simple coordination polymers with tunable chemical compositions and open framework.Prussian blue can act as electrode materials in its pristine form and has also been utilized to derive various metallic nanostructures for electrochemical applications due to their simple fabrication process,non-toxic characteristics,and low price.Here,we firstly describe the charge storage mechanisms of SCs briefly followed by an introduction of the fabrication methods of PB/PBAs and their derivatives.Then,a comprehensive review on recent studies of the use of PB/PBAs and their derivatives as the electrode materials for SCs are given with a focus on strategies to improve their electrochemical performances.Finally,we discuss critical challenges in this research area and propose some general ideas for future research. 展开更多
关键词 DERIVATIVES HYBRIDS prussian blue and its analogues SUPERCAPACITORS
下载PDF
Ternary Ni-based Prussian blue analogue with superior sodium storage performance induced by synergistic effect of Co and Fe 被引量:4
14
作者 Lu-Lu Zhang Cheng Wei +5 位作者 Xin-Yuan Fu Zhao-Yao Chen Bo Yan Pan-Pan Sun Kai-Jun Chang Xue-Lin Yang 《Carbon Energy》 CAS 2021年第5期827-839,共13页
Prussian blue analogue Na2Ni[Fe(CN)6](Ni-PB)has been widely studied as a cathode material for sodium-ion battery due to its excellent cycling performance.However,Ni-PB has a low theoretical capacity of 85 mAh g^(−1) b... Prussian blue analogue Na2Ni[Fe(CN)6](Ni-PB)has been widely studied as a cathode material for sodium-ion battery due to its excellent cycling performance.However,Ni-PB has a low theoretical capacity of 85 mAh g^(−1) because of the electrochemical inertness of Ni.Herein,ternary Ni-PB is successfully synthesized by double doping with Co and Fe at Ni-site,and the effect of doping with Co and Fe on the electrochemical performance of Ni-PB is systematically investigated through theoretical calculations and electrochemical tests.The first principles calculations confirm that double doping with Co and Fe can significantly reduce the energy barrier and bandgap of Ni-PB.X-ray diffraction and composition analysis results indicate that ternary NiCoFe-PB composite not only has good crystallinity and high Na content but also has low defects and crystal water.Electrochemical tests reveal that,besides the capacity contribution of high-spin Co/Fe and low-spin Fe,Co-doping enhances the electrochemical activity of low-spin Fe and Fe-doping improves the activity of high-spin Co;moreover,double doping can decrease the diffusion resistance of Na+ions through solid electrolyte interface film,accelerate the kinetics for both ion diffusion process and Faradic reaction,and increase active sites.Under the synergistic effect of Co and Fe,this ternary NiCoFe-PB exhibits outstanding electrochemical performance with a high initial discharge capacity of 120.4 mAh g^(−1) at 20mA g^(−1) and an extremely low capacity fading rate of 0.0044%per cycle at a high current density of 2 A g^(−1) even after 10,000 cycles,showing great application potential of ternary NiCoFe-PB in the field of large-scale energy storage. 展开更多
关键词 cathode materials DOPING prussian blue analogue sodium-ion batteries synergistic effect
下载PDF
Construction of hierarchical photocatalysts by growing ZnIn_(2)S_(4) nanosheets on Prussian blue analogue-derived bimetallic sulfides for solar co-production of H_(2) and organic chemicals 被引量:1
15
作者 Liangxuan Zhong Baodong Mao +5 位作者 Meng Liu Mingyue Liu Yaqiu Sun Yi-Tao Song Zhi-Ming Zhang Tong-Bu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期386-394,共9页
Exploring highly efficient bifunctional photocatalysts for simultaneous H2 evolution and organic chemical production in pure water represents a green route for sustainable solar energy storage and conversion.Herein,a ... Exploring highly efficient bifunctional photocatalysts for simultaneous H2 evolution and organic chemical production in pure water represents a green route for sustainable solar energy storage and conversion.Herein,a facile strategy was explored for preparing a hierarchical porous heterostructure of Fe_(4)Ni_(5)S_(8)@ZnIn_(2)S_(4)(FNS@ZIS)by the in situ growth of ZIS nanosheets on Prussian blue analogue(PBA)-derived bimetallic FNS sulfides.A series of FNS@ZIS hierarchical structures were facilely prepared by adjusting the loading amount(n%)of FNS(n=19,26,and 32 for FNS@ZIS-1-3).These structures can efficiently drive the solar co-production of H_(2) and organic chemicals.The optimal co-production was achieved with FNS@ZIS-2,affording a H_(2) evolution rate of 10465μmol·g^(-1)·h^(-1),along with high selectivity for the oxidation of benzyl alcohol to benzaldehyde(>99.9%).The performance was 22 and 31 times higher than that of FNS and ZIS,respectively,and even superior to the state-of-the-art results achieved using various sacrificial agents.Further mechanistic study indicated that the unique hierarchical core/shell architecture can facilitate interfacial charge separation,afford bimetallic synergy,abundant active sites and excellent photostability.This work highlights a simple and efficient method for preparing porous multimetallic hierarchical structures for the solar co-production of organic chemicals and H_(2) fuel. 展开更多
关键词 prussian blue analogue PHOTOCATALYSIS Hydrogen evolution Benzyl alcohol oxidation Coordination polymer
下载PDF
Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes
16
作者 Lin Fan Xiaotian Guo +2 位作者 Wenting Li Xinxin Hang Huan Pang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期513-518,共6页
The unique components and architecture of Prussian blue analogous(PBAs) offer great potential for the construction of various functional nanostructures. Herein, we reported the preparation of a series of Mn–Fe oxides... The unique components and architecture of Prussian blue analogous(PBAs) offer great potential for the construction of various functional nanostructures. Herein, we reported the preparation of a series of Mn–Fe oxides-based hybrids using Mn–Fe PBA as a template and an organic carbon source by calcination.The study focuses on revealing the interaction between the microstructure and electrochemical performance of the products obtained at different calcination temperatures. Notably, the as-derived porous Fe–Fe0.33Mn0.67O/C nanocubes(i.e., M600) exhibited the best rate capability and cycle life compared with other samples(~890 m Ah/g at 0.1 A/g, 626.8 m Ah/g after 1000 cycles at 1.0 A/g with a 99% capacity retention). These can be attributed to the fact that the porous structure provides shorter Li+diffusion path and promotes the penetration of electrolyte. Besides, the N-doped C formed by the carbonization of organic ligands can buffer the volume change and prevent the aggregation of Fe_(0.33)Mn_(0.67)O nanoparticles during the discharge/charge cycles. Moreover, the presence of metallic Fe enhances the conductivity and the electrochemical activity, which accelerates the electrochemical reactions. Therefore, reasonable design of microstructure and compositions of functional nanocomposites is the key to obtain ideal electrochemical properties. 展开更多
关键词 prussian blue analogues Metal/metal oxide Synergy effect Porous Li-ion-battery anode
原文传递
Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)_(4)
17
作者 王春艳 高其龙 +1 位作者 Andrea Sanson 贾瑜 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期99-103,共5页
The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings,high performance fuel cell cathodes to tooth fillings.Negative thermal expansion(NTE)materia... The control of thermal expansion is essential in applications where thermal stability is required from fiber optics coatings,high performance fuel cell cathodes to tooth fillings.Negative thermal expansion(NTE)materials,although rare,are fundamental for this purpose.This work focuses on studying tetracyanidoborate salt CuB(CN)_(4),an interesting cubicstructure material that displays large isotropic NTE.A joint study of synchrotron x-ray diffraction,temperature-dependent Raman spectroscopy,and lattice dynamics calculations was conducted,showing that not only low-frequency optical modes(transverse thermal vibrations of N and C atoms)but also the acoustic modes(the vibrations of Cu atoms as a collective torsion of the neighboring atoms),contribute to NTE.As a result,new insights were gained into the NTE mechanism of CuB(CN)_(4) and related framework materials. 展开更多
关键词 negative thermal expansion prussian blue analogues crystal structure PHONONS
下载PDF
Rapid and Scalable Synthesis of Prussian Blue Analogue Nanocubes for Electrocatalytic Water Oxidation 被引量:3
18
作者 Wenbin Sun Zimeng Wei +5 位作者 Jindi Qi Luyao Kang Jiechen Li Junfeng Xie Bo Tang Yi Xie 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第9期2347-2353,共7页
Design and fabrication of earth-abundant electrocatalysts for oxygen evolution reaction(OER)is essential in improving the overall ef-ficiency of water electrolysis.In this work,we proposed a rapid and scalable synthes... Design and fabrication of earth-abundant electrocatalysts for oxygen evolution reaction(OER)is essential in improving the overall ef-ficiency of water electrolysis.In this work,we proposed a rapid and scalable synthesis route for fabricating Prussian blue analogue(PBA)nano cubes with tun able compositi ons and uniform particle size.With the structural ben efits of abu ndant surface sites,facile charge transfer behavior and favorable Co^(2+)-to-Co^(3+)pre-oxidation reaction,fast generation and accumulation of the catalytically active Co3+sites can be achieved for the CoCo PBA nano cubes,leadi ng to remarkable OER activity with simulta neously achieved low overpotential,large anodic current density,small Tafel slope as well as outstanding intrinsic activity.Of note,by performing Iong-term OER operati on,the CoCo PBA nano cubes exhibit a remarkable 5.5-folds performs nee enhan ceme nt,and obvious surface rec on struc-tion and the accumulation of high-valence Co species can be identified,proving the crucial role of pre-oxidation process in boosting the OER catalysis.This work proposed a un iversal approach for the rapid,scalable and con trollable fabricati on of the PBA-based materials,and the elucidation of the pre-oxidation process in facilitating the OER catalysis may provide useful guidanee for designing and optimizing advanced catalysts for energy-related electro-oxidation reactions in the future. 展开更多
关键词 ELECTROCHEMISTRY Energy conversion Water splitting prussian blue analogue Synthesis design
原文传递
Polyacrylonitrile-based gel polymer electrolyte filled with Prussian blue forhigh-performance lithium polymer batteries
19
作者 Xietao Yuan Amir Abdul Razzaq +4 位作者 Yujie Chen Yuebin Lian Xiaohui Zhao Yang Peng Zhao Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第2期890-894,共5页
Lithium polymer batteries(LPBs) rely on a high ion transport to gain improved cell performance.Thermostable and porous gel polymer electrolytes(GPEs) have attracted much attention due to their excellent properties in ... Lithium polymer batteries(LPBs) rely on a high ion transport to gain improved cell performance.Thermostable and porous gel polymer electrolytes(GPEs) have attracted much attention due to their excellent properties in electrolyte wettability and ionic conductivity.In this work,iron-nickel-cobalt trimetal Prussian blue analogue(PBA) nanocubes are filled into the electro spun polyacrylonitrile(PAN)-based membranes to generate GPE composites with morphological superiority consisting of fine fibers and interconnected pores.The thus obtained PBA@PAN fibrous membrane showcases good thermal stability,high porosity and electrolyte uptake,as well as a peak io nic conductivity of 2.7 mS/cm with the addition of 10% PBA,Consequently,the assembled lithium iron phosphate(LiFePO_(4)) battery using PBA@PAN-10 as the GPE delivers a high capacity of 152.2 mAh/g at 0.2 C and an ultralow capacity decay of0.09% per cycle in a long-te rm cycle life of 350 cycles at 1 C,endorsing its promising applications in LPBs. 展开更多
关键词 prussian blue analogue Gel polymer electrolyte Ionic conductivity Thermal stability Lithium polymer batteries
原文传递
Self-template synthesis of hollow Fe-doped CoP prisms with enhanced oxygen evolution reaction activity
20
作者 Xueda Ding Haitao Huang +5 位作者 Qiang Wan Xu Guan Yuanxing Fang Sen Lin Dongyang Chen Zailai Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期415-422,I0009,共9页
The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-dop... The development of efficient, durable and low cost electrocatalysts is crucial but extremely challenging for the oxygen evolution reaction (OER). Herein, we develop a self-template strategy to synthesize hollow Fe-doped CoP prisms (Fe-CoP) via ion exchange of cobalt acetate hydroxide with [Fe(CN)_(6)]^(3-) and phosphorization-induced transformation of CoFe-PBA (Co/Fe-containing prussian blue analogue) prisms in N2 atmosphere. The obtained Fe-CoP not only inherits the hollow prism-like morphology of CoFe-PBA, but also forms rich mesoporous channel. The Fe-CoP prisms exhibit extraordinary OER performances in 1.0 M KOH, with a low overpotential of 236 mV to deliver a current density of 10 mA cm^(−2) and a low Tafel slope of 32.9 mV dec^(–1). Moreover, the presented electrocatalyst shows good long-term operating durability and activity. The XPS and TEM analysis confirm that Fe-CoP has undergone surface reconstruction in the process of electrocatalytic OER, and the in situ formed oxides and oxyhydroxides are the real active species to boost OER. This work provides a promising pathway to the design and synthesis of efficient and robust electrocatalysts with hierarchical hollow structure for boosting OER. 展开更多
关键词 prussian blue analogue Hollow structure Fe-doped CoP Oxygen evolution reaction
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部