This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fra...This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by join- ing the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an im- plicit second-order scheme is utilized to enhance the com- putational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite el- ement method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both veloc- ity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
In this study, the in vitro antimicrobial and antiviral activities of the lysozyme from marine strain S-12-86 (LS) were investigated, The antimicrobial activity of LS was tested by minimum inhibition concentration ...In this study, the in vitro antimicrobial and antiviral activities of the lysozyme from marine strain S-12-86 (LS) were investigated, The antimicrobial activity of LS was tested by minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) method. The inhibiting effects of LS on pseudo rabies virus (PRV) in swine kidney cells (PK-15 ceils) were judged by cytopathogenic effect test (CPE), The results showed LS had a broad antimicrobial spectrum against several standard strains including gram-positive bacteria, gram-negative bacteria, fungi, etc, The MIC of LS was 0.25-4.00 mg mL^-1 and its MBC was 0.25-8.00 mg mL^-1, respectively, Observation under the transmission electron microscope revealed that the cell wall of Candida albicans was distorted seriously, and the cytoplasm with many cavities was asymmetrical after being hydrolyzed by LS, The median cytotoxicity concentration (TC50) of LS was 100.0 μg mL^-1, the median effective concentration (EC50) was 0.46 μg mL^-1, and the selectivity index (TI = TC50/EC50) was 217. LS could inhibit PRV in PK-15 cells when it was added to cell culture medium at 0, 2, 4, 6, and 8 h after PK-15 cells had been infected by PRV. From the results, we concluded that LS had broad antimicrobial spectrum and good inhibiting effects on PRV,展开更多
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing t...A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.展开更多
基金supported by the Natural Science Foundation of China (11061021)the Program of Higher-level talents of Inner Mongolia University (SPH-IMU,Z200901004)the Scientific Research Projection of Higher Schools of Inner Mongolia(NJ10016,NJ10006)
文摘This paper proposes a hybrid vertex-centered fi- nite volume/finite element method for solution of the two di- mensional (2D) incompressible Navier-Stokes equations on unstructured grids. An incremental pressure fractional step method is adopted to handle the velocity-pressure coupling. The velocity and the pressure are collocated at the node of the vertex-centered control volume which is formed by join- ing the centroid of cells sharing the common vertex. For the temporal integration of the momentum equations, an im- plicit second-order scheme is utilized to enhance the com- putational stability and eliminate the time step limit due to the diffusion term. The momentum equations are discretized by the vertex-centered finite volume method (FVM) and the pressure Poisson equation is solved by the Galerkin finite el- ement method (FEM). The momentum interpolation is used to damp out the spurious pressure wiggles. The test case with analytical solutions demonstrates second-order accuracy of the current hybrid scheme in time and space for both veloc- ity and pressure. The classic test cases, the lid-driven cavity flow, the skew cavity flow and the backward-facing step flow, show that numerical results are in good agreement with the published benchmark solutions.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.
文摘In this study, the in vitro antimicrobial and antiviral activities of the lysozyme from marine strain S-12-86 (LS) were investigated, The antimicrobial activity of LS was tested by minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) method. The inhibiting effects of LS on pseudo rabies virus (PRV) in swine kidney cells (PK-15 ceils) were judged by cytopathogenic effect test (CPE), The results showed LS had a broad antimicrobial spectrum against several standard strains including gram-positive bacteria, gram-negative bacteria, fungi, etc, The MIC of LS was 0.25-4.00 mg mL^-1 and its MBC was 0.25-8.00 mg mL^-1, respectively, Observation under the transmission electron microscope revealed that the cell wall of Candida albicans was distorted seriously, and the cytoplasm with many cavities was asymmetrical after being hydrolyzed by LS, The median cytotoxicity concentration (TC50) of LS was 100.0 μg mL^-1, the median effective concentration (EC50) was 0.46 μg mL^-1, and the selectivity index (TI = TC50/EC50) was 217. LS could inhibit PRV in PK-15 cells when it was added to cell culture medium at 0, 2, 4, 6, and 8 h after PK-15 cells had been infected by PRV. From the results, we concluded that LS had broad antimicrobial spectrum and good inhibiting effects on PRV,
基金financially supported by the Science and Technology Project of the Ministry of Transport (Grant No. 2011329224170)
文摘A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.