For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested su...This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.展开更多
An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the lab...An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.展开更多
Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT...Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.展开更多
This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 fee...This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark-β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological(MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.展开更多
A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system s...A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.展开更多
Two single-storey single-span reinforcement concrete (RC) frame structures strengthened with Y-eccentrically brace were designed and manufactured to be 1/3 scale. The pseudo-dynamic testing method was used to study ...Two single-storey single-span reinforcement concrete (RC) frame structures strengthened with Y-eccentrically brace were designed and manufactured to be 1/3 scale. The pseudo-dynamic testing method was used to study the mechanical characteristics and the seismic performance under E1-Centro earthquake action with different peak acceleration adjusted by China's Code for Seismic Design of Buildings. The test results indicate that RC frame structures strengthened with Y- eccentrically steel brace present perfect seismic performance under strong earthquake action owing to the good ductility, strong bearing capability and fine energy absorbing capability provided by energy dissipation element and high lateral stiffness provided by diagonal braces. The seismic performance is also affected by the length of outsourcing steel at the joint between energy dissipation element of eccentric steel brace and RC frame beam. The joint should be considerably designed to make sure that shear failure can firstly occur in energy dissipation element.展开更多
A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was compo...A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was composed of H- section steel columns and composite beams, and was assembled by bolted height-adjustable steel beam-to-column connections (BHA connections). Beam-only-connected SPSWs were selected as lateral load resisting members. The specimen was subjected to four ground motions of progressively increasing intensity. The results showed that: (1) beam-only-connected S PSWs provided sufficient lateral load resistance, lateral stiffness, and energy dissipation capacity to the fabricated frame via the tension ficld action developed in their infill panels; (2) the fabricated frame, assembled by BHA connections, exhibited substantial redundancy and good ductility; (3) an undesirable failure mode of the fabricated frame, in huge earthquakes, included severe cracking in composite beams and block shear failure in SPSWs' connections; (4) the inter-storey shear force distribution determined by ASCE/SE1 7-10 was verified with experimental data.展开更多
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
基金Public Benefit Research Foundation under Grant No.201108006Natural Science Foundation under Grant No.51161120360+2 种基金Heilongjiang Overseas Funding under Grant No.LC201002 of ChinaGrant-in-Aid for Scientific Research(Basic Research Category A,19206060)Japan Society for the Promotion of Science
文摘This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.
基金State Key Research Project in 13th Five-Year under Grant No.2016YFC0701901the Beijing Science and Technology Program under Grant No.Z161100001216015the Natural Science Foundation of China under Grants Nos.51422809 and 51778342
文摘An online hybrid test was carried out on a 40-story 120-m high concrete shear wall structure. The structure was divided into two substructures whereby a physical model of the bottom three stories was tested in the laboratory and the upper 37 stories were simulated numerically using ABAQUS. An overlapping domain method was employed for the bottom three stories to ensure the validity of the boundary conditions of the superstructure. Mixed control was adopted in the test. Displacement control was used to apply the horizontal displacement, while two controlled force actuators were applied to simulate the overturning moment, which is very large and cannot be ignored in the substructure hybrid test of high-rise buildings. A series of tests with earthquake sources of sequentially increasing intensities were carried out. The test results indicate that the proposed hybrid test method is a solution to reproduce the seismic response of high-rise concrete shear wall buildings. The seismic performance of the tested precast high-rise building satisfies the requirements of the Chinese seismic design code.
基金The Key Project of the Major Research Plan of Natural Science Foundation of China Under Grant No.90715036the Key Project of the Natural Science Foundation of China Under Grant No.50338020
文摘Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.
基金Scientific Research Fund of the Institute of Engineering Mechanics,CEA under Grant No.2016B09,2017A02 and 2016A06the National Natural Science Foundation of China under Grant No,51378478,51408565,51678538 and 51161120360the National ScienceTechnology Support Plan Projects(2016YFC0701106)
文摘This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark-β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological(MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.
基金Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2016A06International Science & Technology Cooperation Program of China under Grant No.2014DFA70950National Natural Science Foundation of China under Grant Nos.51378478,51161120360
文摘A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.
基金Funded by National Natural Science Foundation of China (Grant No. 51078248)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Two single-storey single-span reinforcement concrete (RC) frame structures strengthened with Y-eccentrically brace were designed and manufactured to be 1/3 scale. The pseudo-dynamic testing method was used to study the mechanical characteristics and the seismic performance under E1-Centro earthquake action with different peak acceleration adjusted by China's Code for Seismic Design of Buildings. The test results indicate that RC frame structures strengthened with Y- eccentrically steel brace present perfect seismic performance under strong earthquake action owing to the good ductility, strong bearing capability and fine energy absorbing capability provided by energy dissipation element and high lateral stiffness provided by diagonal braces. The seismic performance is also affected by the length of outsourcing steel at the joint between energy dissipation element of eccentric steel brace and RC frame beam. The joint should be considerably designed to make sure that shear failure can firstly occur in energy dissipation element.
基金Project supported by the National Natural Science Foundation of China (No. 51378147)
文摘A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic perlbrmance. The specimen was a three-storey single-bay frame, which was composed of H- section steel columns and composite beams, and was assembled by bolted height-adjustable steel beam-to-column connections (BHA connections). Beam-only-connected SPSWs were selected as lateral load resisting members. The specimen was subjected to four ground motions of progressively increasing intensity. The results showed that: (1) beam-only-connected S PSWs provided sufficient lateral load resistance, lateral stiffness, and energy dissipation capacity to the fabricated frame via the tension ficld action developed in their infill panels; (2) the fabricated frame, assembled by BHA connections, exhibited substantial redundancy and good ductility; (3) an undesirable failure mode of the fabricated frame, in huge earthquakes, included severe cracking in composite beams and block shear failure in SPSWs' connections; (4) the inter-storey shear force distribution determined by ASCE/SE1 7-10 was verified with experimental data.