The Chern-Simons theory in two-space one-time dimensions is quantized on the light-front under appropriate gauge-fixing conditions using the Hamiltonian, path integral and BRST formulations.
We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian i...We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.展开更多
We study the Hamiltonian, path integral and Becchi-Rouet-Stora and Tyutin (BRST) formulations of the restricted gauge theory of QCD2 à la Cho et al. under appropriate gauge-fixing conditions.
In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where...In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0...Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0 when the Hamiltonian H(t,u+v) is periodic in (t,u) and its growth at infinity in v is at most like or faster than |v|a, 0≤ae is a forcing term. For the proof, we use the Least Action Principle and a Generalized Saddle Point Theorem.展开更多
In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean...In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first- passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kraraers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.展开更多
It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-d...It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.展开更多
In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem o...In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.展开更多
A negative example shows that the model given by Mason Iri is used to prove that the relationship between the minimum flow problem and the Hamiltonian path problem in a (directed) network, is not rigorous. A new model...A negative example shows that the model given by Mason Iri is used to prove that the relationship between the minimum flow problem and the Hamiltonian path problem in a (directed) network, is not rigorous. A new model called minimum spanning flow in a network is established to revise the old one. It is proved that the problem of determining whether there is a Hamiltonian path from a specified vertex s to another t on a given digraph can be reducible at polynomial time to the problem of constructing a minimum spanning flow in a two-terminal extended network s,t , with the unit capacity for all arcs.展开更多
The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree...The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory. The validity of the collective Hamiltonian is checked in the two special cases of the multi-O(4) model: the case where the number of the shells is equal to one (a single j-shell case), and the case where the Hartree-Bogoliubov equilibrium point is spherical (the spherical case). The collective Hamiltonian constitutes a good starting point to study nuclear shape coexistence.展开更多
In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on t...In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on the hyperplanes defined by the world- sheet time . In the present work we quantize the same theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time , using the standard constraint quantization techniques in the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac, which is in contrast to the corresponding case of the instant-form theory, where the theory remains unconstrained in the sense of Dirac. The light-front theory is seen to possess a set of twenty six primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.展开更多
We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain...We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators.展开更多
Fundamental theory presented in Part (I)[8] is used to analyze anisotropic plane stress problems. First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential o...Fundamental theory presented in Part (I)[8] is used to analyze anisotropic plane stress problems. First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential operator matrix; then we solve eigen problem; finally, we present the process of obtaining analytical solutions and semi-analytical solutions for anisotropic plane stress porblems on rectangular area.展开更多
In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle...In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.展开更多
In this work,the solvability of a class of second-order Hamiltonian systems on time scales is generalized to non-local boundary conditions.The measurements obtained by non-local conditions are more accurate than those...In this work,the solvability of a class of second-order Hamiltonian systems on time scales is generalized to non-local boundary conditions.The measurements obtained by non-local conditions are more accurate than those given by local conditions in some problems.Compared with the known results,this work establishes the variational structure in an appropriate Sobolev’s space.Then,by applying the mountain pass theorem and symmetric mountain pass theorem,the existence and multiplicity of the solutions are obtained.Finally,some examples with numerical simulation results are given to illustrate the correctness of the results obtained.展开更多
Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally gauge-fixed Polyakov D1 brane action using the Hamiltonian and path integral formulations. The IFQ...Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally gauge-fixed Polyakov D1 brane action using the Hamiltonian and path integral formulations. The IFQ is studied in the equal world-sheet time framework on the hyperplanes defined by the world-sheet time σ0=τ=constant and the LFQ in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+= (τ+σ) =constant. The light-front theory is seen to be a constrained system in the sense of Dirac in contrast to the instant-form theory. However, owing to the gauge anomalous nature of these theories, both of these theories are seen to lack the usual string gauge symmetries defined by the world-sheet reparametrization invariance (WSRI) and the Weyl invariance (WI). In the present work we show that these theories when considered in the presence of background gauge fields such as the NSNS 2-form gauge field Bαβ(σ,τ) or in the presence of U(1) gauge field Aα(σ,τ) and the constant scalar axion field C(σ,τ), then they are seen to possess the usual string gauge symmetries (WSRI and WI). In fact, these background gauge fields are seen to behave as the Wess-Zumino or Stueckelberg fields and the terms containing these fields are seen to behave as Wess-Zumino or Stueckelberg terms for these theories.展开更多
文摘The Chern-Simons theory in two-space one-time dimensions is quantized on the light-front under appropriate gauge-fixing conditions using the Hamiltonian, path integral and BRST formulations.
文摘We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.
文摘We study the Hamiltonian, path integral and Becchi-Rouet-Stora and Tyutin (BRST) formulations of the restricted gauge theory of QCD2 à la Cho et al. under appropriate gauge-fixing conditions.
文摘In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
文摘Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0 when the Hamiltonian H(t,u+v) is periodic in (t,u) and its growth at infinity in v is at most like or faster than |v|a, 0≤ae is a forcing term. For the proof, we use the Least Action Principle and a Generalized Saddle Point Theorem.
基金Project supported by the National Natural Science Foundation of China (Key Grant No 10332030), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20060335125) and the National Science Foundation for Post-doctoral Scientists of China (Grant No 20060390338).
文摘In this paper the energy diffusion controlled reaction rate in dissipative Hamiltonian systems is investigated by using the stochastic averaging method for quasi Hamiltonian systems. The boundary value problem of mean first- passage time (MFPT) of averaged system is formulated and the energy diffusion controlled reaction rate is obtained as the inverse of MFPT. The energy diffusion controlled reaction rate in the classical Kramers bistable potential and in a two-dimensional bistable potential with a heat bath are obtained by using the proposed approach respectively. The obtained results are then compared with those from Monte Carlo simulation of original systems and from the classical Kraraers theory. It is shown that the reaction rate obtained by using the proposed approach agrees well with that from Monte Carlo simulation and is more accurate than the classical Kramers rate.
文摘It this paper we obtain existence and bifurcation theorems for homoclinic orbits in three-dimeensional,time dependent and independent,perturbations of generalized Hamiltonian differential equations defined on three-dimensional Poisson manifolds.Thed we apply them to a truncated spectral model of the quasi-geostrophic flow on a cyclic β-plane.
基金The NSF (10601019 and J0630104) of ChinaChinese Postdoctoral Science Foundation and 985 Program of Jilin University.
文摘In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.
文摘A negative example shows that the model given by Mason Iri is used to prove that the relationship between the minimum flow problem and the Hamiltonian path problem in a (directed) network, is not rigorous. A new model called minimum spanning flow in a network is established to revise the old one. It is proved that the problem of determining whether there is a Hamiltonian path from a specified vertex s to another t on a given digraph can be reducible at polynomial time to the problem of constructing a minimum spanning flow in a two-terminal extended network s,t , with the unit capacity for all arcs.
基金The project supported by the Director Foundation from the Department of Nuclear Physics of China Institute of Atomic Energy under Grant Nos. 11SZZ200501 and 11SZZ200601 0ne of the authors (J.Z. Gu) is grateful to H. Aiba, K. Hagino, K. Matsuyanagi, S. Mizutori, F. Sakata, and Y.Z. Zhuo for valuable discussions on this subject. He also acknowledges support from Postdoctoral Fellowship for Foreign Researchers of the Japan Society for the Promotion of Science with thanks.
文摘The collective Bamiltonian up to the fourth order for multi-O(4) model is derived based on the self-consistent collective-coordinate (SCC) method, which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory. The validity of the collective Hamiltonian is checked in the two special cases of the multi-O(4) model: the case where the number of the shells is equal to one (a single j-shell case), and the case where the Hartree-Bogoliubov equilibrium point is spherical (the spherical case). The collective Hamiltonian constitutes a good starting point to study nuclear shape coexistence.
基金Supported by Anhui Provincial Natural Science Foundation(1408085MA02)the Key Foundation of Anhui Education Bureau(KJ2012A019)211 Project of Anhui University(02303303-33030011,J18520207)
文摘In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on the hyperplanes defined by the world- sheet time . In the present work we quantize the same theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time , using the standard constraint quantization techniques in the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac, which is in contrast to the corresponding case of the instant-form theory, where the theory remains unconstrained in the sense of Dirac. The light-front theory is seen to possess a set of twenty six primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.
文摘We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators.
文摘Fundamental theory presented in Part (I)[8] is used to analyze anisotropic plane stress problems. First we construct the generalized variational principle to enter Hamiltonian system and get Hamiltonian differential operator matrix; then we solve eigen problem; finally, we present the process of obtaining analytical solutions and semi-analytical solutions for anisotropic plane stress porblems on rectangular area.
基金Partially supported by the Talent Foundation (522-7901-01140418) of Northwest A & FUniversity.
文摘In this paper we mainly concern the persistence of invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensional tori might be elliptic, hyperbolic, or of mixed type.
基金Project supported by the National Natural Science Foundation of China(No.11571207)the Natural Science Foundation of Shandong Province of China(Nos.ZR2021MA064 and ZR2020MA017)the Taishan Scholar Project of Shandong Province of China。
文摘In this work,the solvability of a class of second-order Hamiltonian systems on time scales is generalized to non-local boundary conditions.The measurements obtained by non-local conditions are more accurate than those given by local conditions in some problems.Compared with the known results,this work establishes the variational structure in an appropriate Sobolev’s space.Then,by applying the mountain pass theorem and symmetric mountain pass theorem,the existence and multiplicity of the solutions are obtained.Finally,some examples with numerical simulation results are given to illustrate the correctness of the results obtained.
文摘Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally gauge-fixed Polyakov D1 brane action using the Hamiltonian and path integral formulations. The IFQ is studied in the equal world-sheet time framework on the hyperplanes defined by the world-sheet time σ0=τ=constant and the LFQ in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+= (τ+σ) =constant. The light-front theory is seen to be a constrained system in the sense of Dirac in contrast to the instant-form theory. However, owing to the gauge anomalous nature of these theories, both of these theories are seen to lack the usual string gauge symmetries defined by the world-sheet reparametrization invariance (WSRI) and the Weyl invariance (WI). In the present work we show that these theories when considered in the presence of background gauge fields such as the NSNS 2-form gauge field Bαβ(σ,τ) or in the presence of U(1) gauge field Aα(σ,τ) and the constant scalar axion field C(σ,τ), then they are seen to possess the usual string gauge symmetries (WSRI and WI). In fact, these background gauge fields are seen to behave as the Wess-Zumino or Stueckelberg fields and the terms containing these fields are seen to behave as Wess-Zumino or Stueckelberg terms for these theories.