1 INTRODUCTIONUse of static mixers to process non-Newtonian fluids is quite commn.Data on thepressure drop of non-Newtonian fluids in Kenics static mixers are very useful in thedesign and engineering application of su...1 INTRODUCTIONUse of static mixers to process non-Newtonian fluids is quite commn.Data on thepressure drop of non-Newtonian fluids in Kenics static mixers are very useful in thedesign and engineering application of such mixers.However,only a few studies con-cerned with the pressure drop of non-Newtonian fluid flow in static ndxers can befound in literature.Wilkinson and Cliff presented pressure drop data for aqueousglycerine solutions(Newtonian fluids)and aqueous 1% polyacrylamide solution showingviscoelastic behavior.They found no difference between the friction factors of展开更多
A theoretical analysis for the boundary layer flow over a continuous moving surface in an otherwise quiescent pseudo-plastic non-Newtonian fluid medium was presented. The types of potential flows necessary for similar...A theoretical analysis for the boundary layer flow over a continuous moving surface in an otherwise quiescent pseudo-plastic non-Newtonian fluid medium was presented. The types of potential flows necessary for similar solutions to the boundary layer equations were determined and the solutions were numerically presented for different values of power law exponent.展开更多
The present paper deals with a singular nonlinear boundary value problem arising in the theory of power law fluids, sufficient conditions for the existence of bifurcation solutions to the problem are obtained.
Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics,due to its vast industrial applications.The analysis involves studying ...Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics,due to its vast industrial applications.The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film,film surface profile,shear stress,liquid velocity,volumetric flux,vorticity,gravity,viscosity among others,along with different boundary conditions.In this article,we extend this analysis in fractional space using a homotopy based scheme,considering the case of a Non-Newtonian Pseudo-Plastic fluid for lifting and drainage on a vertical wall.After applying similarity transformations,the given problems are reduced to highly non-linear and inhomogeneous ordinary differential equations.Moreover,fractional differential equations are obtained using basic definitions of fractional calculus.The Homotopy Perturbation Method(HPM),along with fractional calculus is used for obtaining approximate solutions.Physical quantities such as the velocity profile,volume flux and average velocity respectively for lift and drainage cases have been calculated.To the best of our knowledge,the given problems have not been attempted before in fractional space.Validity and convergence of the obtained solutions are confirmed by finding residual errors.From a physical perspective,a comprehensive study of the effects of various parameters on the velocity profile is also performed.Study reveals that Stokes number St,non-Newtonian parameterand magnetic parameter M have inverse relationship with fluid velocity in lifting case.In the drainage case,Stokes number St and non-Newtonian parameterhave direct relationship with fluid velocity,but magnetic parameter M shows inverse relationship with velocity.The investigation also shows that the fractional parameterhas direct relationship with the fluid velocity in lifting case,while it has inverse relationship with velocity in the drainage case.展开更多
A two-layer model, with the upper layer being the perfect fluid and the lowerlayer being the pseudo-plastic fluid describing water wave attenuation over mud bed, wasestablished. A simplified method based on the princi...A two-layer model, with the upper layer being the perfect fluid and the lowerlayer being the pseudo-plastic fluid describing water wave attenuation over mud bed, wasestablished. A simplified method based on the principle of e-quivalcnt work was applied to solve theboundary value problems. The computational results of the model show that the two-layer perfectfluid model and the perfect-viscous fluid model are all special cases of the present model. Thecomplex nonlinear properties of wave attenuation over mud bed, can be explained by the presentmodel, e. g., the wave dissipation rale decreases wilh the wave height in certain cases, while thesmall wave propagates over mud bed with less energy dissipation and large wave attenuates rapidly inother cases. Other factors influencing the wave attenuation were also discussed.展开更多
文摘1 INTRODUCTIONUse of static mixers to process non-Newtonian fluids is quite commn.Data on thepressure drop of non-Newtonian fluids in Kenics static mixers are very useful in thedesign and engineering application of such mixers.However,only a few studies con-cerned with the pressure drop of non-Newtonian fluid flow in static ndxers can befound in literature.Wilkinson and Cliff presented pressure drop data for aqueousglycerine solutions(Newtonian fluids)and aqueous 1% polyacrylamide solution showingviscoelastic behavior.They found no difference between the friction factors of
基金the National Natural Science Foundations of China(No.50476083)
文摘A theoretical analysis for the boundary layer flow over a continuous moving surface in an otherwise quiescent pseudo-plastic non-Newtonian fluid medium was presented. The types of potential flows necessary for similar solutions to the boundary layer equations were determined and the solutions were numerically presented for different values of power law exponent.
文摘The present paper deals with a singular nonlinear boundary value problem arising in the theory of power law fluids, sufficient conditions for the existence of bifurcation solutions to the problem are obtained.
文摘Modeling and analysis of thin film flow with respect to magneto hydro dynamical effect has been an important theme in the field of fluid dynamics,due to its vast industrial applications.The analysis involves studying the behavior and response of governing equations on the basis of various parameters such as thickness of the film,film surface profile,shear stress,liquid velocity,volumetric flux,vorticity,gravity,viscosity among others,along with different boundary conditions.In this article,we extend this analysis in fractional space using a homotopy based scheme,considering the case of a Non-Newtonian Pseudo-Plastic fluid for lifting and drainage on a vertical wall.After applying similarity transformations,the given problems are reduced to highly non-linear and inhomogeneous ordinary differential equations.Moreover,fractional differential equations are obtained using basic definitions of fractional calculus.The Homotopy Perturbation Method(HPM),along with fractional calculus is used for obtaining approximate solutions.Physical quantities such as the velocity profile,volume flux and average velocity respectively for lift and drainage cases have been calculated.To the best of our knowledge,the given problems have not been attempted before in fractional space.Validity and convergence of the obtained solutions are confirmed by finding residual errors.From a physical perspective,a comprehensive study of the effects of various parameters on the velocity profile is also performed.Study reveals that Stokes number St,non-Newtonian parameterand magnetic parameter M have inverse relationship with fluid velocity in lifting case.In the drainage case,Stokes number St and non-Newtonian parameterhave direct relationship with fluid velocity,but magnetic parameter M shows inverse relationship with velocity.The investigation also shows that the fractional parameterhas direct relationship with the fluid velocity in lifting case,while it has inverse relationship with velocity in the drainage case.
基金This work was supported by the National Natural Science Foundation of China (Grant No: 50279029)the Central Funding of Hong Kong Polytechnic University (Grant No: GT219)Hong Kong RGC/NSFC Funding. (Grant No: NSFC/HKU 26)
文摘A two-layer model, with the upper layer being the perfect fluid and the lowerlayer being the pseudo-plastic fluid describing water wave attenuation over mud bed, wasestablished. A simplified method based on the principle of e-quivalcnt work was applied to solve theboundary value problems. The computational results of the model show that the two-layer perfectfluid model and the perfect-viscous fluid model are all special cases of the present model. Thecomplex nonlinear properties of wave attenuation over mud bed, can be explained by the presentmodel, e. g., the wave dissipation rale decreases wilh the wave height in certain cases, while thesmall wave propagates over mud bed with less energy dissipation and large wave attenuates rapidly inother cases. Other factors influencing the wave attenuation were also discussed.