As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
Due to the particularity of its location algorithm,there are some unique difficulties and features regarding the test of target motion states of multilateration(MLAT)system for airport surface surveillance.This paper ...Due to the particularity of its location algorithm,there are some unique difficulties and features regarding the test of target motion states of multilateration(MLAT)system for airport surface surveillance.This paper proposed a test method applicable for the airport surface surveillance MLAT system,which can effectively determine whether the target is static or moving at a certain speed.Via a normalized test statistic designed in the sliding data window,the proposed method not only eliminates the impact of geometry Dilution of precision(GDOP)effectively,but also transforms the test of different motion states into the test of different probability density functions.Meanwhile,by adjusting the size of the sliding window,it can fulfill different test performance requirements.The method was developed through strict theoretical extrapolation and performance analysis,and simulations results verified its correctness and effectiveness.展开更多
The existing decoy-state quantum key distribution(QKD)beating photon-number-splitting(PNS)attack provides a more accurate method to estimate the secure key rate,while it still considers that only single-photon pulses ...The existing decoy-state quantum key distribution(QKD)beating photon-number-splitting(PNS)attack provides a more accurate method to estimate the secure key rate,while it still considers that only single-photon pulses can generate secure keys in any case.However,multiphoton pulses can also generate secure keys if we can detect the possibility of PNS attack in the channel.The ultimate goal of this line of research is to confirm the absence of all types of PNS attacks.In particular,the PNS attack mentioned and detected in this paper is only the weaker version of PNS attack which significantly changes the observed values of the legitimate users.In this paper,under the null hypothesis of no weaker version of PNS attack,we first determine whether there is an attack or not by retrieving the missing information of the existing decoy-state protocols,extract a Cauchy distribution statistic,and further provide a detection method and the type I error probability.If the result is judged to be an attack,we can use the existing decoy-state method and the GLLP formula to estimate the secure key rate.Otherwise,the pulses with the same basis received including both single-photon pulses and multiphoton pulses,can be used to generate the keys and we give the secure key rate in this case.Finally,the associated experiments we performed(i.e.,the significance level is 5%)show the correctness of our method.展开更多
Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and th...Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.展开更多
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.
基金supported by the National Science and Technology Pillar Program of China (No.2011BAH24B06)the National Nature Science Foundation of China+1 种基金Chinese Civil Aviation Jointly Funded Foundation Project (No.U1433129)the Sichuan Provincial Department of Education Foundation(No.13ZB0287)
文摘Due to the particularity of its location algorithm,there are some unique difficulties and features regarding the test of target motion states of multilateration(MLAT)system for airport surface surveillance.This paper proposed a test method applicable for the airport surface surveillance MLAT system,which can effectively determine whether the target is static or moving at a certain speed.Via a normalized test statistic designed in the sliding data window,the proposed method not only eliminates the impact of geometry Dilution of precision(GDOP)effectively,but also transforms the test of different motion states into the test of different probability density functions.Meanwhile,by adjusting the size of the sliding window,it can fulfill different test performance requirements.The method was developed through strict theoretical extrapolation and performance analysis,and simulations results verified its correctness and effectiveness.
文摘The existing decoy-state quantum key distribution(QKD)beating photon-number-splitting(PNS)attack provides a more accurate method to estimate the secure key rate,while it still considers that only single-photon pulses can generate secure keys in any case.However,multiphoton pulses can also generate secure keys if we can detect the possibility of PNS attack in the channel.The ultimate goal of this line of research is to confirm the absence of all types of PNS attacks.In particular,the PNS attack mentioned and detected in this paper is only the weaker version of PNS attack which significantly changes the observed values of the legitimate users.In this paper,under the null hypothesis of no weaker version of PNS attack,we first determine whether there is an attack or not by retrieving the missing information of the existing decoy-state protocols,extract a Cauchy distribution statistic,and further provide a detection method and the type I error probability.If the result is judged to be an attack,we can use the existing decoy-state method and the GLLP formula to estimate the secure key rate.Otherwise,the pulses with the same basis received including both single-photon pulses and multiphoton pulses,can be used to generate the keys and we give the secure key rate in this case.Finally,the associated experiments we performed(i.e.,the significance level is 5%)show the correctness of our method.
文摘Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test. Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover, the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity. This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter. The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress. In addition, it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady indentation creep of a power law material. A control volume (CV) beneath the indenter, which governs the indenter velocity, is identified. The size of the CV at the indented surface is approximately 2.5 times the size of the impression. The stress exponent for creep can be obtained from the pseudosteady indentation creep data. These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.