In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was st...In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was studied, including performic acid(PFA) generated in formic acid, peracetic acid(PAA) generated in acetic acid, and trifluoroperacetic(TFPA) acid generated in trifluoroacetic acid. The effects ofsulfuric acid and sodium formate addition were investigated, the overoxidation ofTMB was discussed, and the main reason for the decreasing selectivity was revealed. The oxidation ofTMB can be controlled and improved through adjusting the reaction temperature, mole ratio ofoxidant to substrate, and reactant concentration. The TMBQ yield of28% was achieved with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of6:1, and reaction temperature 37 ℃. The selectivity of72% was obtained with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of5:1, and reaction temperature of27 ℃. The reaction mechanisms were proposed and discussed based on the gas chromatography–flame ionization detection(GC–FID) and gas chromatography–mass spectrometer(GC–MS) results.展开更多
基金supported by the National Basic Research Program of China ("973" Program) (No. 2012CB720302)the Program for Changjiang Scholars and Innovative Research Teams in Universities (No. IRT0936)
文摘In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was studied, including performic acid(PFA) generated in formic acid, peracetic acid(PAA) generated in acetic acid, and trifluoroperacetic(TFPA) acid generated in trifluoroacetic acid. The effects ofsulfuric acid and sodium formate addition were investigated, the overoxidation ofTMB was discussed, and the main reason for the decreasing selectivity was revealed. The oxidation ofTMB can be controlled and improved through adjusting the reaction temperature, mole ratio ofoxidant to substrate, and reactant concentration. The TMBQ yield of28% was achieved with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of6:1, and reaction temperature 37 ℃. The selectivity of72% was obtained with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of5:1, and reaction temperature of27 ℃. The reaction mechanisms were proposed and discussed based on the gas chromatography–flame ionization detection(GC–FID) and gas chromatography–mass spectrometer(GC–MS) results.