期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Direct and Reverse Carleson Conditions on Generalized Weighted Bergman-Orlicz Spaces
1
作者 Waleed Al-Rawashdeh 《Analysis in Theory and Applications》 CSCD 2017年第3期287-300,共14页
Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weight... Let D be the open unit disk in the complex plane C. For a〉 -1, let dAa(z)=(1 +a) (1 -|z}^2) ^a da(z)be the weighted Lebesgue measure on ]D. For a positive function ω ∈ L^1(D,dAa), the generalized weighted Bergman-Orlicz spaceA^ψω(D,dAa)is||f||ω^ψ=∫Dψ|F(z)|ω(z)dA^(z) 〈 ∞,where q; is a strictly convex Orlicz function that satisfies other technical hypotheses. Let G be a measurable subset of D, we say G satisfies the reverse Carleson condition for A^ψω (D, dAa) if there exists a positive constant C such that ∫Gψ(f(z))ω(z)dAa(z)≥C∫Dψ(|f(z)dAa(z).for all f ∈ .A^ψω (D,dAa). Let μ be a positive Borel measure, we say μ satisfies the direct Carleson condition if there exists a positive constant M such that for all f∈Aψ^ω (D,dAa),∫Dψ(|f(z)|)dμ(z)≤M∫Dψ(|f(z)|)ω(z)dAa(a).In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space Aω^ψ(D,dAa).We present conditions on the set G such that'the reverse Carleson condition'holds. "Moreover, we give a sufficient condition for the finite positive Borel measure μ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces. 展开更多
关键词 Orlicz function global ?2-condition reverse Carleson condition Direct Carleson condition closed range pseudohyperbolic disks Orlicz spaces weighted Bergman spaces generalized weighted Bergman-Orlicz spaces
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部