Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini...Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.展开更多
Background: Test-retest strength reliability of the Electronic Push/Pull Dynamometer (EPPD) in the measurement of the extensor and flexor muscles on a new constructed chair. The objective of the study was to assess re...Background: Test-retest strength reliability of the Electronic Push/Pull Dynamometer (EPPD) in the measurement of the extensor and flexor muscles on a new constructed chair. The objective of the study was to assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. The aims of the author: To assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. Design: A test-retest reliability study. Subjects: One hundred healthy students male and female (mean age, 21y). Methods: Maximum isometric strength of the quadriceps and hamstring muscle groups was measured using the EPPD were recorded at 60° and 90° for 3 trials on 2 occasions. Reliability was assessed with the Intraclass correlation coefficient (ICC), mean and standard deviation (SD) of measurements, and smallest real differences were calculated for the maximum and for the mean and work of the 3 repetitions. Results: Mean strength ranged from 50.44 kg for knee flexion to 55.76 kg for knee extension 50.44 kg to 61.98 kg at 90° hip flexion. Test-retest reliability Intraclass correlation coefficients (ICCs) ranged from 0.85 to 0.99. ICCs for test-retest reliability ranged from 0.780 to 0.998. Conclusions: The results of the reliability study indicate that the EPPD in reliable dynamometer to use in determining lower limb muscle force production. It can be used to measure disease progression and to evaluate changes in knee extension and flexion strength at the individual patient level.展开更多
A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large d...A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.展开更多
During the harvesting process,rigid materials are prone to causing damage to the cotton stalks,which will increase the risk of stalk breakage.A cotton stalk pulling component that blends stiff and flexible materials w...During the harvesting process,rigid materials are prone to causing damage to the cotton stalks,which will increase the risk of stalk breakage.A cotton stalk pulling component that blends stiff and flexible materials was devised to lower the breaking rate.The cotton stalk pulling component was made up of rollers and flexible belts that pull the stalks using clamping force and the forward speed of the tractor.The influence of various factors in the equipment on the harvesting effect of cotton stalks were analyzed through response surface experiments,and a multiple quadratic regression response surface model with missing pulling rate and breakage rate as response values was established.The significant of influencing factors on the breaking rate of cotton stalks are in a descending order as:the angle of cotton stalk pulling,tractor’s forward speed,and the clamping speed of the cotton stalk component.The working parameters of the wheel-belt type cotton stalk pulling machine have been optimized using the response surface combination experimental method,and the optimal parameter combination was obtained as:tractor forward speed of 4.5 km/h,cotton stalk pulling angle of 60°,and clamping speed of the cotton stalk pulling component of 349 r/min.The results of validation experiments showed that the missing pulling rate of cotton stalks was 5.06%and the breakage rate was 13.12%,indicating a good harvesting effect of the cotton stalks.The model was reasonable and the performance parameters could meet the relevant inspection requirements.The results can provide a reference for further research on the technology of flexible cotton stalk pulling.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
To determine whether a given deterministic nonlinear dynamic system is chaotic or periodic, a novel test approach named zero-one (0-1) test has been proposed recently. In this approach, the regular and chaotic motio...To determine whether a given deterministic nonlinear dynamic system is chaotic or periodic, a novel test approach named zero-one (0-1) test has been proposed recently. In this approach, the regular and chaotic motions can be decided by calculating the parameter K approaching asymptotically to zero or one. In this study, we focus on the 0-1 test algorithm and illustrate the selection of parameters of this algorithm by numerical experiments. To validate the reliability and the universality of this algorithm, it is applied to typical nonlinear dynamic systems, including fractional-order dynamic system.展开更多
基金supported by the European Research Fund for Coal and Steel in the AMSSTED Programme RFCR-CT-2013-00001
文摘Laboratory pull-out tests were conducted on the following rock bolts and cable bolts:steel rebars,smooth steel bars,fiberglass reinforced polymer threaded bolts,flexible cable bolts,IR5/IN special cable bolts and Mini-cage cable bolts.The diameter of the tested bolts was between 16 mm and 26 mm.The bolts were grouted in a sandstone sample using resin or cement grouts.The tests were conducted under either constant radial stiffness or constant confining pressure boundary conditions applied on the outer surface of the rock sample.In most tests,the rate of displacement was about 0.02 mm/s.The tests were performed using a pull-out bench that allows testing a wide range of parameters.This paper provides an extensive database of laboratory pull-out test results and confirms the influence of the confining pressure and the embedment length on the pull-out response(rock bolts and cable bolts).It also highlights the sensitivity of the results to the operating conditions and to the behavior of the sample as a whole,which cannot be neglected when the test results are used to assess the bolt-grout or the grouterock interface.
文摘Background: Test-retest strength reliability of the Electronic Push/Pull Dynamometer (EPPD) in the measurement of the extensor and flexor muscles on a new constructed chair. The objective of the study was to assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. The aims of the author: To assess reliability of Electronic Push/Pull Dynamometer in the measurement of the knee flexion and extension at 90° and 60° on a new constructed chair. Design: A test-retest reliability study. Subjects: One hundred healthy students male and female (mean age, 21y). Methods: Maximum isometric strength of the quadriceps and hamstring muscle groups was measured using the EPPD were recorded at 60° and 90° for 3 trials on 2 occasions. Reliability was assessed with the Intraclass correlation coefficient (ICC), mean and standard deviation (SD) of measurements, and smallest real differences were calculated for the maximum and for the mean and work of the 3 repetitions. Results: Mean strength ranged from 50.44 kg for knee flexion to 55.76 kg for knee extension 50.44 kg to 61.98 kg at 90° hip flexion. Test-retest reliability Intraclass correlation coefficients (ICCs) ranged from 0.85 to 0.99. ICCs for test-retest reliability ranged from 0.780 to 0.998. Conclusions: The results of the reliability study indicate that the EPPD in reliable dynamometer to use in determining lower limb muscle force production. It can be used to measure disease progression and to evaluate changes in knee extension and flexion strength at the individual patient level.
基金supported by National Key Research and Development Program(2016YFC0600901)the National Natural Science Foundation of China(Grant Nos.51374214,51134005 and 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining&Technology,Beijing(Grant Nos.2009QL03)the State Scholarship Fund of China
文摘A device for supporting soft rock masses combined with a constant resistance structure characterized by constant resistance and large deformation at the end of a steel bar, known as the constant resistance and large deformation(CRLD) bolt, has recently been developed to counteract soft rock swelling that often occurs during deep mining. In order to further study the mechanical properties of the CRLD bolt, we investigated its mechanical properties by comparison with the conventional strength bolt(rebar) using static pull tests on many aspects, including supporting capacity, elongation, radial deformation, and energy absorption. The tests verified that the mechanical defects of the rebar, which include the decrease of bolt diameter, reduction of supporting capacity, and emergence and evolution of fracture until failure during the whole pull process, were caused by the Poisson's ratio effect. Due to the special structure set on the CRLD bolt, the bolt presents a seemingly unusual phenomenon of the negative Poisson's ratio effect, i.e., the diameter of the constant resistance structure increases while under-pulling. It is the very effect that ensures the extraordinary mechanical properties, including high resistance, large elongation, and strong energy absorption. According to the comparison and analysis of numerical simulation and field test, we can conclude that the CRLD bolt works better than the rebar bolt.
基金financially supported by the National Nature Foundation Project(Grant No.52365038)the National Nature Foundation Project(Grant No.51865058)+3 种基金the Xinjiang Uygur Autonomous Region Agricultural Science and Technology Extension and Service Project(Grant No.NTFW-2022-17)the Xinjiang Uygur Autonomous Region Key R&D Project(Grant No.2022B02022-2)the Xinjiang Uygur Autonomous Region Key R&D Project(Grant No.2022B02023-3)the Xinjiang Uygur Autonomous Region Youth Science Fund(Grant No.2022D01B91).
文摘During the harvesting process,rigid materials are prone to causing damage to the cotton stalks,which will increase the risk of stalk breakage.A cotton stalk pulling component that blends stiff and flexible materials was devised to lower the breaking rate.The cotton stalk pulling component was made up of rollers and flexible belts that pull the stalks using clamping force and the forward speed of the tractor.The influence of various factors in the equipment on the harvesting effect of cotton stalks were analyzed through response surface experiments,and a multiple quadratic regression response surface model with missing pulling rate and breakage rate as response values was established.The significant of influencing factors on the breaking rate of cotton stalks are in a descending order as:the angle of cotton stalk pulling,tractor’s forward speed,and the clamping speed of the cotton stalk component.The working parameters of the wheel-belt type cotton stalk pulling machine have been optimized using the response surface combination experimental method,and the optimal parameter combination was obtained as:tractor forward speed of 4.5 km/h,cotton stalk pulling angle of 60°,and clamping speed of the cotton stalk pulling component of 349 r/min.The results of validation experiments showed that the missing pulling rate of cotton stalks was 5.06%and the breakage rate was 13.12%,indicating a good harvesting effect of the cotton stalks.The model was reasonable and the performance parameters could meet the relevant inspection requirements.The results can provide a reference for further research on the technology of flexible cotton stalk pulling.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金Project supported by the National Natural Science Foundation of of China (Grant No. 60672041)
文摘To determine whether a given deterministic nonlinear dynamic system is chaotic or periodic, a novel test approach named zero-one (0-1) test has been proposed recently. In this approach, the regular and chaotic motions can be decided by calculating the parameter K approaching asymptotically to zero or one. In this study, we focus on the 0-1 test algorithm and illustrate the selection of parameters of this algorithm by numerical experiments. To validate the reliability and the universality of this algorithm, it is applied to typical nonlinear dynamic systems, including fractional-order dynamic system.