In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, ...In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.展开更多
Overconstrained mechanism has the advantages of large bearing capacity and high motion reliability,but its force analysis is complex and difficult because the mechanism system contains overconstraints.Considering the ...Overconstrained mechanism has the advantages of large bearing capacity and high motion reliability,but its force analysis is complex and difficult because the mechanism system contains overconstraints.Considering the limb axial deformation,taking typical 2SS+P and 7-SS passive overconstrained mechanisms,2SPS+P and 7-SPS active overconstrained mechanisms,and 2SPS+P and 7-SPS passive-input overconstrained mechanisms as examples,a new force analysis method based on the idea of equivalent stiffness is proposed.The equivalent stiffness matrix of passive overconstrained mechanism is derived by combining the force balance and deformation compatibility equations with consideration of axial elastic limb deformations.The relationship between the constraint wrench magnitudes and the external force,limb stiffness is established.The equivalent stiffness matrix of active overconstrained mechanism is derived by combining the force balance and displacement compatibility equations.Here,the relationship between the magnitudes of the actuated wrenches and the external force,limb stiffness is investigated.Combining with the equivalent stiffness of the passive overconstrained mechanism,an analytical relationship between the actuated forces of passive-input overconstrained mechanism and the output displacement,limb stiffness is explored.Finally,adaptability of the equivalent stiffness to overconstrained mechanisms is discussed,and the effect of the limb stiffness on overconstrained mechanisms force distribution is revealed.The research results provide a theoretical reference for the design,research and practical application of overconstrained mechanism.展开更多
To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to t...To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.展开更多
An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for ...An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.展开更多
Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment....Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.Therefore,a 5-DOF(degrees of freedom)parallel kinematic machine(PKM)with redundant constraints is proposed.Based on the kinematics analysis of the parallel mechanism using intermediate variables,the kinematics problems of the PKM are solved through equivalent kinematics model.The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM,where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis.And the stiffness model of the parallel mechanism is improved by correction coefficient matrix,each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism.The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively.The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism.To enhance the machining accuracy of the PKM,the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece.A plate workpiece taken as example is examined in the case study section,which demonstrates the effectiveness of optimization method.展开更多
Most references on hydropneumatic suspension analysis regard it as harden Duffing spring and take the white noise as the system input, which is quite different from real physical model. It will introduce considerable ...Most references on hydropneumatic suspension analysis regard it as harden Duffing spring and take the white noise as the system input, which is quite different from real physical model. It will introduce considerable errors to the analytical result compared with the numerical simulation which makes it impossible to give a good depiction of the hydropneumatic suspension dynamics. In this paper, the dynamic response of the hydropneumatic suspension is worked out using statistical linearization based on 2 DOFs nonlinear suspension model. The damping of the suspension and the tire stiffness are both regarded as linear components and the real road roughness spectrum is used to work out the system input. The explicit analytical equivalent stiffness, dynamic mean value offset from statistic equilibrium position and the sprung acceleration varied with parameters of hydropneumatic spring, road roughness and vehicle velocity are worked out by substituting the nonlinear stiffness of hydropneumatic spring with its first three terms Tyler series at the static equilibrium position using James formula. The comparison of the numerical simulation and analytical result both on statistical parameters and distribution shows the validity of the analysis. The explicit form provides a concise and valid method on hydropneumatic suspension design and optimization.展开更多
Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gea...Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.展开更多
An equivalent bar conception is firstly developed for the computer analysis of pantographic foldable structures. The uniplet of two three node beam elements is assumed as a six bar assembly with respect to least norm ...An equivalent bar conception is firstly developed for the computer analysis of pantographic foldable structures. The uniplet of two three node beam elements is assumed as a six bar assembly with respect to least norm least square solution for the elastic strain energy equality. The equilibrium equation is developed for the equivalent models, and the internal forces formulated sequently for backup calculation. This procedure is proved practical for some engineering, and some interesting concepts proposed. Finally, three numerical tests are presented.展开更多
In the longitudinal seismic deformation method for shield tunnels,one of the most commonly used is the longitudinal equivalent stiffness beam model(LES)for simulating the mechanical behavior of the lining.In this mode...In the longitudinal seismic deformation method for shield tunnels,one of the most commonly used is the longitudinal equivalent stiffness beam model(LES)for simulating the mechanical behavior of the lining.In this model,axial deformation and bending deformation are independent,so the equivalent stiffness is a constant value.However,the actual situation is that axial deformation and bending deformation occur simultaneously,which is not considered in LES.At present,we are not clear about the effect on the calculation results when axial deformation and bending deformation occur simultaneously.Therefore,in this paper,we improve the traditional LES by taking the relative deformation as a load and considering the coordinated deformation of axial and bending degrees of freedom.This improved model is called DNLES,and its neutral axis equations are an explicit expression.Then,we propose an iterative algorithm to solve the calculation model of the DNLES-based longitudinal seismic deformation method.Through a calculation example,we find that the internal forces based on LES are notably underestimated than those of DNLES in the compression bending zone,while are overestimated in the tension bending zone.When considering the combined effect,the maximum bending moment reached 13.7 times that of the LES model,and the axial pressure and tension were about 1.14 and 0.96 times,respectively.Further analysis reveals the coordinated deformation process in the axial and bending directions of the shield tunnel,which leads to a consequent change in equivalent stiffness.This explains why,in the longitudinal seismic deformation method,the traditional LES may result in unreasonable calculation results.展开更多
基金Sponsored by the Subsidization Plan for Outstanding Young Teacher of Ministry of Education
文摘In order to understand mechanical characters and find out a calculating method for preflex beams used in particular bridge engineering projects, two types of simply supported preflex beams with variable crosssection, preflex beam with alterative web depth and preflex beam with aherative steel flange thickness, are dis- cussed on how to achieve the equivalent moment of inertia and Young' s modulus. Additionally, methods of cal- culating the equivalent bending stiffness and post-cracking deflection are proposed. Results of the experiments on 6 beams agree well with the theoretical analysis, which proves the correctness of the proposed formulas.
基金National Natural Science Foundation of China(Grant Nos.52075467,51875495)Key Project of Natural Science Foundation of Hebei Province of China(Grant No.E2017203335)Hebei Provincial Science and Technology Project of China(Grant No.206Z1805G)。
文摘Overconstrained mechanism has the advantages of large bearing capacity and high motion reliability,but its force analysis is complex and difficult because the mechanism system contains overconstraints.Considering the limb axial deformation,taking typical 2SS+P and 7-SS passive overconstrained mechanisms,2SPS+P and 7-SPS active overconstrained mechanisms,and 2SPS+P and 7-SPS passive-input overconstrained mechanisms as examples,a new force analysis method based on the idea of equivalent stiffness is proposed.The equivalent stiffness matrix of passive overconstrained mechanism is derived by combining the force balance and deformation compatibility equations with consideration of axial elastic limb deformations.The relationship between the constraint wrench magnitudes and the external force,limb stiffness is established.The equivalent stiffness matrix of active overconstrained mechanism is derived by combining the force balance and displacement compatibility equations.Here,the relationship between the magnitudes of the actuated wrenches and the external force,limb stiffness is investigated.Combining with the equivalent stiffness of the passive overconstrained mechanism,an analytical relationship between the actuated forces of passive-input overconstrained mechanism and the output displacement,limb stiffness is explored.Finally,adaptability of the equivalent stiffness to overconstrained mechanisms is discussed,and the effect of the limb stiffness on overconstrained mechanisms force distribution is revealed.The research results provide a theoretical reference for the design,research and practical application of overconstrained mechanism.
基金Project(020940) supported by the Natural Science Foundation of Guangdong Province,China
文摘To solve the problems of divergence,low accuracy and project application of membrane wrinkling analysis,an analysis method of zero shear modulus and equivalent stiffness was proposed.This method is an improvement to the previous method (Method I) of local coordinate transposition and stiffness equivalence.The new method is derived and the feasibility is theoretically proved.A small-scale membrane structure is analyzed by the two methods,and the results show that the computational efficiency of the new method (Method II) is approximately 23 times that of Method I.When Method II is applied to a large-scale membrane stadium structure,it is found that this new method can quickly make the second principal stress of one way wrinkled elements zero,and make the two principal stresses of two-way wrinkled elements zero as well.It could attain the correct load responses right after the appearance of wrinkled elements,which indicates that Method II can be applied to wrinkling analysis of large-scale membrane structures.
基金Project supported by the Key Project of Chinese Ministry of Education (No.106015).
文摘An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.
文摘Hole drilling or contour milling for the large and complex workpieces such as automobile panels and aircraft fuselages makes a high combined demand on machining accuracy,stiffness and workspace of machining equipment.Therefore,a 5-DOF(degrees of freedom)parallel kinematic machine(PKM)with redundant constraints is proposed.Based on the kinematics analysis of the parallel mechanism using intermediate variables,the kinematics problems of the PKM are solved through equivalent kinematics model.The structural stiffness matrix method is adopted to model the stiffness of the parallel mechanism of the PKM,where the stiffness of each joint and branch component is obtained by stiffness formula and finite element analysis.And the stiffness model of the parallel mechanism is improved by correction coefficient matrix,each element of which is constructed as a polynomial function of three independent end variables of the parallel mechanism.The terminal stiffness matrices obtained by simulation result are used to determine the coefficients of polynomial function by least square fitting to describe the correction coefficient over the workspace of the parallel mechanism quantitatively.The experiment results prove that the modification method can greatly improve the stiffness model of the parallel mechanism.To enhance the machining accuracy of the PKM,the proposed kinematics model and the improved stiffness model are utilized to optimize the working stiffness of parallel machine by searching the best relative position of parallel machine and workpiece.A plate workpiece taken as example is examined in the case study section,which demonstrates the effectiveness of optimization method.
基金Supported by National Natural Science Foundation of China(Grant No.51005018)Beijing Municipal Clean Vehicle Key Laboratory Open Foundation of China(2013)
文摘Most references on hydropneumatic suspension analysis regard it as harden Duffing spring and take the white noise as the system input, which is quite different from real physical model. It will introduce considerable errors to the analytical result compared with the numerical simulation which makes it impossible to give a good depiction of the hydropneumatic suspension dynamics. In this paper, the dynamic response of the hydropneumatic suspension is worked out using statistical linearization based on 2 DOFs nonlinear suspension model. The damping of the suspension and the tire stiffness are both regarded as linear components and the real road roughness spectrum is used to work out the system input. The explicit analytical equivalent stiffness, dynamic mean value offset from statistic equilibrium position and the sprung acceleration varied with parameters of hydropneumatic spring, road roughness and vehicle velocity are worked out by substituting the nonlinear stiffness of hydropneumatic spring with its first three terms Tyler series at the static equilibrium position using James formula. The comparison of the numerical simulation and analytical result both on statistical parameters and distribution shows the validity of the analysis. The explicit form provides a concise and valid method on hydropneumatic suspension design and optimization.
基金supported by the National Natural Science Foundations of China(Nos.51105194,51375226)the Fundamental Research Funds for the Central Universities(No.NS2015049)
文摘Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.
文摘An equivalent bar conception is firstly developed for the computer analysis of pantographic foldable structures. The uniplet of two three node beam elements is assumed as a six bar assembly with respect to least norm least square solution for the elastic strain energy equality. The equilibrium equation is developed for the equivalent models, and the internal forces formulated sequently for backup calculation. This procedure is proved practical for some engineering, and some interesting concepts proposed. Finally, three numerical tests are presented.
基金the National Natural Science Foundation of China(Grant Nos.52130808 and 51878566)National Key R&D Program of China(Key Projects for International Science and Technology Innovation Cooperation between Governments,Grant No.2022YFE0104300).
文摘In the longitudinal seismic deformation method for shield tunnels,one of the most commonly used is the longitudinal equivalent stiffness beam model(LES)for simulating the mechanical behavior of the lining.In this model,axial deformation and bending deformation are independent,so the equivalent stiffness is a constant value.However,the actual situation is that axial deformation and bending deformation occur simultaneously,which is not considered in LES.At present,we are not clear about the effect on the calculation results when axial deformation and bending deformation occur simultaneously.Therefore,in this paper,we improve the traditional LES by taking the relative deformation as a load and considering the coordinated deformation of axial and bending degrees of freedom.This improved model is called DNLES,and its neutral axis equations are an explicit expression.Then,we propose an iterative algorithm to solve the calculation model of the DNLES-based longitudinal seismic deformation method.Through a calculation example,we find that the internal forces based on LES are notably underestimated than those of DNLES in the compression bending zone,while are overestimated in the tension bending zone.When considering the combined effect,the maximum bending moment reached 13.7 times that of the LES model,and the axial pressure and tension were about 1.14 and 0.96 times,respectively.Further analysis reveals the coordinated deformation process in the axial and bending directions of the shield tunnel,which leads to a consequent change in equivalent stiffness.This explains why,in the longitudinal seismic deformation method,the traditional LES may result in unreasonable calculation results.