期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach 被引量:2
1
作者 郝杰 巩马理 +4 位作者 杜鹏飞 卢宝杰 张帆 张海涛 付星 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期250-257,共8页
A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for r... A novel concept of collision avoidance single-photon light detection and ranging(LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors(SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. 展开更多
关键词 collision avoidance chaotic pulse position modulation time-correlated single photon counting anti-crosstalk
下载PDF
An FPGA-Based Pulse Pile-up Rejection Technique for Photon Counting Imaging Detectors
2
作者 胡坤 李锋 +2 位作者 陈炼 梁福田 金革 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第3期26-29,共4页
A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are... A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are introduced in detail. The photon counting imaging detector comprises a micro-channel plate (MCP) stack, and a wedge and strip anode (WSA). The resolution mask pattern in front of the MCP can be reconstructed after data processing in the FPGA. For high count rates, the rejection design can effectively reduce the impact of the pulse pile-up on the image. The resolution can reach up to 140μm. The pulse pile-up rejection design can also be applied to high-energy physics and particle detection. 展开更多
关键词 An FPGA-Based pulse Pile-up Rejection Technique for Photon Counting Imaging Detectors
下载PDF
A Novel ADC Architecture for Digital Voltage Regulator Module Controllers
3
作者 郭健民 张科 +1 位作者 孔明 李文宏 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第12期2112-2117,共6页
The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from volta... The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application. 展开更多
关键词 voltage regulator modules DC-DC ring-ADC delay-line ADC differential pulse counting discrim-inator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部