Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to imp...Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.展开更多
This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted u...This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.展开更多
We present an efficient method to generate an ultrashort wavelength-tunable XUV pulse by using the harmonic selec- tive enhancement scheme. The results show that by properly controlling the delay times of a two-color ...We present an efficient method to generate an ultrashort wavelength-tunable XUV pulse by using the harmonic selec- tive enhancement scheme. The results show that by properly controlling the delay times of a two-color field or a three-color field, selective enhancement of the harmonics with photon energies between 80 eV and 315 eV can be obtained. Fur- ther, a wavelength-tunable and bandwidth-controllable XUV radiation can be obtained by Fourier transformation of these enhanced harmonics.展开更多
文摘Forhigh power applications,multilevel converters have many advantages in comparison with other circuit topologies with output transformers. Cascaded inverters are one type of multilevel converters,they are easy to implement,very suitable for modularized layout and packaging.Their manufacturing cost is low.A multilevel PWM technique,called as General Technique of Selected Harmonics Elimination (GTSHE) ,is proposed in the paper. A general harmonic elimination equation for N cells,M pulses per half cycle,nth harmonic is derived,and verified by simulation results.
文摘This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.
基金supported by the Scientific Research Fund of Liaoning Provincial Education Department,China(Grant No.L2012223)the Scientific Research Fund of Liaoning University of Technology,China(Grant Nos.X201319 and X201312)
文摘We present an efficient method to generate an ultrashort wavelength-tunable XUV pulse by using the harmonic selec- tive enhancement scheme. The results show that by properly controlling the delay times of a two-color field or a three-color field, selective enhancement of the harmonics with photon energies between 80 eV and 315 eV can be obtained. Fur- ther, a wavelength-tunable and bandwidth-controllable XUV radiation can be obtained by Fourier transformation of these enhanced harmonics.